Python实现基于多元线性回归模型进行统计学相互作用和方差分析(anova算法)项目实战

本文主要是介绍Python实现基于多元线性回归模型进行统计学相互作用和方差分析(anova算法)项目实战,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。

1.项目背景

多元线性回归模型(Multiple Linear Regression Model)是一种统计学方法,用于研究一个或多个自变量(predictors)与因变量(dependent variable)之间的关系。在模型中,因变量的值通过一个线性函数来预测,该函数包含了自变量的系数和截距项。

相互作用(Interaction)是指模型中的两个或多个自变量之间存在一种依赖关系,即一个自变量对因变量的影响程度取决于另一个自变量的取值。在多元线性回归中,如果存在显著的交互效应,意味着简单的主效应并不能完全描述自变量对因变量的影响,需要考虑自变量之间的联合效应。

例如,在一个包含两个自变量 X1 和 X2 的模型中,可能存在一个交互项 X1*X2。这意味着对于给定的 X1 值,X2 对因变量的影响可能随着 X1 的变化而变化,反之亦然。

方差分析(ANOVA,Analysis of Variance)在多元线性回归模型中主要用于检验不同组别或条件下的均值差异是否显著。当模型包含分类变量,并且我们想探究这些分类变量的不同水平(或它们与其他连续变量的交互作用)是否对因变量有显著影响时,可以使用方差分析。

在多元线性回归框架下,可以通过 F 检验或者anova表来评估各个自变量、交互项以及误差项对总变异性贡献的显著性。这样就可以确定哪些自变量及其交互项对因变量有显著影响,并进一步解释模型的预测能力。

本项目通过OLS回归算法来构建线性回归模型进行统计学相互作用和方差分析。 

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:

编号 

变量名称

描述

1

S

工资

2

X

经验(年)

3

E

教育(1=学士,2=硕士,3=博士)

4

M

管理(1=管理,0=非管理)

数据详情如下(部分展示):

3.数据预处理

3.1 用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据:

关键代码:

3.2 数据缺失查看

使用Pandas工具的info()方法查看数据信息:

  

从上图可以看到,总共有4个变量,数据中无缺失值,共46条数据。

关键代码:

3.3 数据描述性统计

通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。

关键代码如下:

4.探索性数据分析

4.1 变量直方图

用Matplotlib工具的hist()方法绘制直方图:

   从上图可以看到,变量主要集中在12500~27500之间。

4.2 相关性分析

     从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。

4.3 绘制散点图

5.构建线性回归模型

主要使用OLS回归算法,用于目标回归。

5.1 构建模型

编号

模型名称

参数

1

OLS回归模型

默认参数

5.2 模型摘要信息

5.3 影响力摘要信息

影响力指标部分数据展示:

5.4 残差散点图

5.5 模型摘要信息

把"E" 和 "X" 的乘积作为模型的一个特征项,进行建模。

5.6 方差分析结果

5.7 模型摘要信息

把"E" 和 "M" 的乘积作为模型的一个特征项,进行建模。

5.8 方差分析结果

5.9 学生化残差散点图

6.模型评估

6.1 模型摘要信息

E、 X 、 M三个特征建模。

6.2 模型摘要信息

把"E" 和 "X" 的乘积作为模型的一个特征项,进行建模。

6.3 方差分析结果

6.4 模型摘要信息

把"E" 和 "M" 的乘积作为模型的一个特征项,进行建模。

6.5 方差分析结果

6.6 标准残差散点图

6.7 特征散点图

6.8 相互作用图

7.结论与展望

综上所述,本文采用了OLS算法来构建回归模型进行方差分析和相互作用分析,最终证明了我们提出的模型效果良好。此模型可用于日常产品的预测。

# 本次机器学习项目实战所需的资料,项目资源如下:# 项目说明:# 获取方式一:# 项目实战合集导航:https://docs.qq.com/sheet/DTVd0Y2NNQUlWcmd6?tab=BB08J2# 获取方式二:链接:https://pan.baidu.com/s/1JJoLP6MbnJXAnBrpjRpNHA 
提取码:vnqh

这篇关于Python实现基于多元线性回归模型进行统计学相互作用和方差分析(anova算法)项目实战的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/630328

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

vite搭建vue3项目的搭建步骤

《vite搭建vue3项目的搭建步骤》本文主要介绍了vite搭建vue3项目的搭建步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1.确保Nodejs环境2.使用vite-cli工具3.进入项目安装依赖1.确保Nodejs环境

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符