使用Python和Echarts进行数据可视化分析:旅游景点销量和星级景点统计

本文主要是介绍使用Python和Echarts进行数据可视化分析:旅游景点销量和星级景点统计,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

##使用 Python 和 Echarts 进行数据可视化分析:以旅游景点销量和星级景点统计为例

基于全国各地区景点门票的售卖情况数据,分析全国热门景点分布和国民出游情况

(全国景点分布,国民假期出游分析及建议)

  1. 全国销量 Top20 的热门景点(热门景点);
  2. 全国各省市 4A、5A 景区数量(景点分布情况);
  3. 全国各省市假期出行数据在地图上的分布(出游分析及建议)。
import pandas as pd
from pyecharts.charts import Bar
from pyecharts import options as opts
from pyecharts.charts import Map
from pyecharts.options import VisualMapOpts
# 用pandas读取、导入数据集
data = pd.read_excel("./旅游景点.xlsx")
print(data[:5])

数据集内容如下:

   城市        名称   星级   评分     价格     销量       省/市/区                    坐标  \
0  上海   上海迪士尼乐园  NaN  0.0  325.0  19459  上海·上海·浦东新区  121.667917,31.149712
1  上海  上海海昌海洋公园   4A  0.0  276.5  19406  上海·上海·浦东新区  121.915647,30.917713
2  上海   上海野生动物园   5A  3.6  116.0   6764  上海·上海·浦东新区  121.728112,31.059636
3  上海      东方绿舟   4A  3.5   40.0   5353   上海·上海·青浦区  121.015977,31.107866
4  上海      东方明珠   5A  3.8   54.0   3966  上海·上海·浦东新区   121.50626,31.245369简介   是否免费                      具体地址
0         每个女孩都有一场迪士尼梦  False  上海市浦东新区川沙镇黄赵路310号上海迪士尼乐园
1   看珍稀海洋生物 | 玩超刺激娱乐项目  False         上海市浦东新区南汇城银飞路166号
2  全球动物聚集地 | 零距离和动物做朋友  False           上海市浦东新区南六公路178号
3     全国首屈一指的青少年校外教育营地  False          上海市青浦区沪青平公路6888号
4       感受云端漫步,品味老上海风情  False             上海市浦东新区世纪大道1号
# 销量Top20的热门景点
# 先将数据集按照销量多少进行排序 sort_values()
data_sale = data.sort_values(by="销量", ascending=False)
# print(data_sale[:20])
print(list(data_sale["名称"])[:20])
print(data_sale["销量"].values.tolist()[:20])
Sale = (Bar().add_xaxis(list(data_sale["名称"])[:20]).add_yaxis("销量", data_sale["销量"].values.tolist()[:20])#.set_global_opts(title_opts=opts.TitleOpts(title="全国销量Top20的景点", pos_top="4%", pos_left="40%"),# xaxis_opts=opts.AxisOpts(name="景点名称",#                          splitline_opts=opts.SplitLineOpts(is_show=True)),xaxis_opts=opts.AxisOpts(name="省市",axislabel_opts=opts.LabelOpts(interval=0, rotate=20),splitline_opts=opts.SplitLineOpts(is_show=True),),yaxis_opts=opts.AxisOpts(name="销量"),legend_opts=opts.LegendOpts(pos_left="80%", pos_top="20%"),).set_series_opts(label_opts=opts.LabelOpts(position="top"))# 生成.render("Top20销量.html")
)
['上海迪士尼乐园', '上海海昌海洋公园', '故宫', '秦始皇帝陵博物院(兵马俑)', '成都大熊猫繁育研究基地', '颐和园', '八达岭长城', '长隆野生动物世界', '上海野生动物园', '珠海长隆海洋王国', '七彩云南欢乐世界', '瘦西湖', '南京总统府', '华山景区', '华清宫', '北京野生动物园', '东方绿舟', '天坛公园', '恭王府', '长恨歌']
[19459, 19406, 15277, 12714, 9731, 9633, 9618, 8891, 6764, 6545, 6468, 6005, 5920, 5808, 5702, 5498, 5353, 5300, 5260, 5195]

绘图展示:
在这里插入图片描述

# 先从数据中提取出4A、5A星级的景点
data_rank = data[data["星级"].isin(["4A", "5A"])]
print(data_rank[:5])
# 统计各省市的星级景点数量
count = data_rank.groupby("城市").count()["星级"]print(count[:5])
Rank = (Bar().add_xaxis(count.index.values.tolist()).add_yaxis("4A, 5A级景点数量", count.values.tolist()).set_global_opts(title_opts=opts.TitleOpts(title="各省市4A-5A景区数量", pos_left="40%"),xaxis_opts=opts.AxisOpts(name="省市",axislabel_opts=opts.LabelOpts(interval=0, rotate=35),splitline_opts=opts.SplitLineOpts(is_show=True),),yaxis_opts=opts.AxisOpts(name="数量"),legend_opts=opts.LegendOpts(pos_left="80%", pos_top="15%"),).render("各省市4A-5A景区数量.html")
)
   城市        名称  星级   评分     价格     销量       省/市/区                    坐标  \
1  上海  上海海昌海洋公园  4A  0.0  276.5  19406  上海·上海·浦东新区  121.915647,30.917713
2  上海   上海野生动物园  5A  3.6  116.0   6764  上海·上海·浦东新区  121.728112,31.059636
3  上海      东方绿舟  4A  3.5   40.0   5353   上海·上海·青浦区  121.015977,31.107866
4  上海      东方明珠  5A  3.8   54.0   3966  上海·上海·浦东新区   121.50626,31.245369
7  上海     上海科技馆  5A  3.7   45.0   2120  上海·上海·浦东新区   121.54785,31.224219简介   是否免费                          具体地址
1   看珍稀海洋生物 | 玩超刺激娱乐项目  False             上海市浦东新区南汇城银飞路166号
2  全球动物聚集地 | 零距离和动物做朋友  False               上海市浦东新区南六公路178号
3     全国首屈一指的青少年校外教育营地  False              上海市青浦区沪青平公路6888号
4       感受云端漫步,品味老上海风情  False                 上海市浦东新区世纪大道1号
7    魔都科普教育殿堂 | 周末遛娃圣地  False  上海市浦东新区世纪大道2000号(近二号线上海科技馆站)
城市
上海     25
云南     31
内蒙古    23
北京     38
吉林     10
Name: 星级, dtype: int64

绘图展示:在这里插入图片描述

# 合并生成的两个html中的表格
# 可以不进行合并
with open("Top20销量.html", "r", encoding="utf-8") as f1:html1 = f1.read()with open("各省市4A-5A景区数量.html", "r", encoding="utf-8") as f2:html2 = f2.read()final_html = html1 + html2with open("final.html", "w", encoding="utf-8") as f:f.write(final_html)
# 全国各省市假期出行数据在地图上的分布
data_city = data[["城市", "销量"]]
print(data_city[:5])
# 对各省市销量累加求和
city_cnt = data_city.groupby("城市").sum()["销量"]
print(city_cnt[:5])
city_list = city_cnt.index.tolist()
sale_list = city_cnt.values.tolist()
print(city_list)
print(sale_list)namemap = {"黑龙江省": "黑龙江","吉林省": "吉林","辽宁省": "辽宁","北京市": "北京","天津市": "天津","河北省": "河北","山西省": "山西","内蒙古自治区": "内蒙古","上海市": "上海","江苏省": "江苏","山东省": "山东","浙江省": "浙江","安徽省": "安徽","江西省": "江西","福建省": "福建","广东省": "广东","澳门特别行政区": "澳门","台湾省": "台湾","香港特别行政区": "香港","西藏自治区": "西藏","广西壮族自治区": "广西","海南省": "海南","河南省": "河南","湖北省": "湖北","湖南省": "湖南","陕西省": "陕西","新疆维吾尔自治区": "新疆","宁夏回族自治区": "宁夏","甘肃省": "甘肃","青海省": "青海","重庆市": "重庆","四川省": "四川","贵州省": "贵州","云南省": "云南",
}c = (Map()# 添加中国地图.add("旅游景点", [list(z) for z in zip(city_list, sale_list)], "china", name_map=namemap).set_global_opts(title_opts=opts.TitleOpts(title="全国各省市假期出行数据在地图上的分布", pos_left="30%"),legend_opts=opts.LegendOpts(pos_top="10%", pos_left="70%"),visualmap_opts=opts.VisualMapOpts(min_=1000, max_=100000, is_piecewise=True),).render("全国各省市假期出行数据在地图上的分布.html")
)
   城市     销量
0  上海  19459
1  上海  19406
2  上海   6764
3  上海   5353
4  上海   3966
城市
上海     84084
云南     28056
内蒙古     3959
北京     93987
台湾      1001
Name: 销量, dtype: int64
['上海', '云南', '内蒙古', '北京', '台湾', '吉林', '四川', '天津', '宁夏', '安徽', '山东', '山西', '广东', '广西', '新疆', '江苏', '江西', '河北', '河南', '浙江', '海南', '湖北', '湖南', '澳门', '甘肃', '福建', '西藏', '贵州', '辽宁', '重庆', '陕西', '青海', '香港', '黑龙江']
[84084, 28056, 3959, 93987, 1001, 3772, 65052, 5254, 5622, 21027, 32147, 15904, 62757, 37946, 3614, 80783, 11046, 6826, 33776, 45481, 44123, 22563, 6980, 3128, 4338, 23256, 7028, 22499, 10423, 20054, 64353, 4591, 1006, 4639]

绘图展示:
在这里插入图片描述

echarts 官方文档

这篇关于使用Python和Echarts进行数据可视化分析:旅游景点销量和星级景点统计的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/629326

相关文章

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

SQL Server跟踪自动统计信息更新实战指南

《SQLServer跟踪自动统计信息更新实战指南》本文详解SQLServer自动统计信息更新的跟踪方法,推荐使用扩展事件实时捕获更新操作及详细信息,同时结合系统视图快速检查统计信息状态,重点强调修... 目录SQL Server 如何跟踪自动统计信息更新:深入解析与实战指南 核心跟踪方法1️⃣ 利用系统目录

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON: