深度学习笔记(七)——基于Iris/MNIST数据集构建基础的分类网络算法实战

本文主要是介绍深度学习笔记(七)——基于Iris/MNIST数据集构建基础的分类网络算法实战,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文中程序以Tensorflow-2.6.0为例
部分概念包含笔者个人理解,如有遗漏或错误,欢迎评论或私信指正。
截图和程序部分引用自北京大学机器学习公开课

认识网络的构建结构

在神经网络的构建过程中,都避不开以下几个步骤:

  1. 导入网络和依赖模块
  2. 原始数据处理和清洗
  3. 加载训练和测试数据
  4. 构建网络结构,确定网络优化方法
  5. 将数据送入网络进行训练,同时判断预测效果
  6. 保存模型
  7. 部署算法,使用新的数据进行预测推理

使用Keras快速构建网络的必要API

在tensorflow2版本中将很多基础函数进行了二次封装,进一步急速了算法初期的构建实现。通过keras提供的很多高级API可以在较短的代码体量上实现网络功能。同时通过搭配tf中的基础功能函数可以实现各种不同类型的卷积和组合操作。正是这中高级API和底层元素及的操作大幅度的提升了tensorflow的自由程度和易用性。

常用网络

全连接层
tf.keras.layers.Dense(units=3, activation=tf.keras.activations.softmax, kernel_regularizer=tf.keras.regularizers.L2())

units:维数(神经元个数)
activation:激活函数,可选:relu softmax sigmoid tanh,这里记不住的话可以用tf.keras.activations.逐个查看
kernel_regularizer:正则化函数,同样的可以使用tf.keras.regularizers.逐个查看
全连接层是标准的神经元组成,更多被用在网络的后端或解码端(Decoder)用来输出预测数据。

拉伸层(维度展平)
tf.keras.layers.Flatten()

这个函数默认不需要输入参数,直接使用,它会将多维的数据按照每一行依次排开首尾连接变成一个一维的张量。通常在数据输入到全连接层之前使用。

卷积层
tf.keras.layers.Conv2D(filters=3, kernel_size=3, strides=1, padding='valid')

filters:卷积核个数
kernel_size:卷积核尺寸
strides:卷积核步长,卷积核是在原始数据上滑动遍历完成数据计算。
padding:可填 ‘valid’ ‘same’,是否使用全零填充,影响最后卷积结果的大小。
卷积一般被用来提取数据的数据特征。卷积最关键的就是卷积核个数和卷积核尺寸。假设输入一个1nn大小的张量,经过x个卷积核+步长为2+尺寸可以整除n的卷积层之后会输出一个x*(n/2)*(n/2)大小的张量。可以理解为卷积步长和卷积核大小影响输出张量的长宽,卷积核的大小影响输出张量的深度。

构建网络

使用Sequential构建简单网络,或者构建网络模块。列表中顺序包含网络的各个层。

tf.keras.models.Sequential([ ])

使用独立的class构建,这里定义一个类继承自 tensorflow.keras.Model 后面基本是标准结构>初始化相关参数>定义网络层>重写call函数定义前向传播层的连接顺序。后续随着使用的深入可以进一步的添加更多函数来实现不同类型的网络。

class mynnModel(Model):    # 继承from tensorflow.keras import Model 作为父类def __init__(self):super(IrisModel, self).__init__()   # 初始化父类的参数self.d1 = layers.Dense(units=3, activation=tf.keras.activations.softmax, kernel_regularizer=tf.keras.regularizers.L2())def call(self, input):  # 重写前向传播函数y = self.d1(input)return ymodel = IrisModel()

训练及其参数设置

设置训练参数
tensorflow.keras.Model.compile(optimizer=参数更新优化器,loss=损失函数metrics=准确率计算方式,即输出数据类型和标签数据类型如何对应)

具体参数可以看下面的内容:

optimizer:参数优化器 SGD:        tf.keras.optimizers.SGD(learning_rate=0.1,momentum=动量参数) learning_rate学习率,momentum动量参数AdaGrad:    tf.keras.optimizers.Adagrad(learning_rate=学习率)Adam:       tf.keras.optimizers.Adam(learning_rate=学习率 , beta_1=0.9, beta_2=0.999)
loss:损失函数MSE:        tf.keras.losses.MeanSquaredError()交叉熵损失: tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False) from_logits=true时输出值经过一次softmax概率归一化
metrics:准确率计算方式,就是输出数据类型和标签数据类型如何对应数值型(两个都是序列值):    'accuracy'都是独热码:    'categorical_accuracy'标签是数值,输出是独热码: 'sparse_categorical_accuracy'
训练
tensorflow.keras.Model.model.fit(x_train, y_train, batch_size=32, epochs=500, validation_split=0.2, validation_freq=20)

网络传入参数含义如下:

输入的数据依次为:输入训练特征数据,标签数据,单次输入数据量,迭代次数
validation_split=从训练集划分多少比例数据用来测试 /  validation_data=(测试特征数据,测试标签数据) 这两个参数智能二选一
validation_freq=多少次epoch测试一次
输出网络信息
tensorflow.keras.Model.model.summary()

上面这个函数可以在训练结束或者训练开始之前输出一次网络的结构信息用于确认。

实际应用展示

环境

软件环境的配置可以查看环境配置流程说明

cuda = 11.8	# CUDA也可以使用11.2版本
python=3.7
numpy==1.19.5
matplotlib== 3.5.3
notebook==6.4.12
scikit-learn==1.2.0
tensorflow==2.6.0
keras==2.6.0
使用iris数据集构建基础的分类网络
import tensorflow as tf
from sklearn import datasets
import numpy as npx_train = datasets.load_iris().data
y_train = datasets.load_iris().targetnp.random.seed(116)
np.random.shuffle(x_train)
np.random.seed(116)
np.random.shuffle(y_train)
tf.random.set_seed(116)model = tf.keras.models.Sequential([ tf.keras.layers.Dense(3, activation='softmax',kernel_regularizer=tf.keras.regularizers.l2())])
model.compile(optimizer=tf.keras.optimizers.SGD(learning_rate=0.1),loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),metrics=['sparse_categorical_accuracy'])
model.fit(x_train, y_train, batch_size=32, epochs=500, validation_split=0.2, validation_freq=20)
model.summary( )

通过上面这样几行简单的代码,我们实现了对iris数据的分类训练。在上面的代码中使用了Sequential函数来构建网络。

使用MNIST数据集设计分类网络

在开始下面的代码之前,要先下载对应的数据 https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz 复制这段网址在浏览器打开会直接下载数据,然后将下载好的mnist.npz复制到一个新的路径下,然后在tf.keras.datasets.mnist.load_data(path=‘you file path ’)代码中的这行里修改为你的路径,注意要使用绝对路径

import tensorflow as tf
from tensorflow.keras import Model
from tensorflow.keras import layers
from sklearn import datasets
import numpy as np
import matplotlib.pyplot as plt(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data(path='E:\Tensorflow\data\mnist.npz') # 注意替换自己的使用绝对路径
x_train, x_test = x_train/255.0, x_test/255.0	# 图像数据归一化
print('训练集样本的大小:', x_train.shape)
print('训练集标签的大小:', y_train.shape)
print('测试集样本的大小:', x_test.shape)
print('测试集标签的大小:', y_test.shape)
#可视化样本,下面是输出了训练集中前20个样本
fig, ax = plt.subplots(nrows=4,ncols=5,sharex='all',sharey='all')
ax = ax.flatten()
for i in range(20):img = x_train[i].reshape(28, 28)ax[i].imshow(img,cmap='Greys')
ax[0].set_xticks([])
ax[0].set_yticks([])
plt.tight_layout()
plt.show()
# 定义网络结构
class mnisModel(Model):def __init__(self, *args, **kwargs):super(mnisModel, self).__init__(*args, **kwargs)self.flatten1=layers.Flatten()self.d1=layers.Dense(128, activation=tf.keras.activations.relu)self.d2=layers.Dense(10, activation=tf.keras.activations.softmax)def call(self, input):x = self.flatten1(input)x = self.d1(x)x = self.d2(x)return(x)
model = mnisModel()
#设置训练参数
model.compile(optimizer='adam',     # 'adam'  tf.keras.optimizers.Adam(learning_rate=0.4 , beta_1=0.9, beta_2=0.999)loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),metrics=['sparse_categorical_accuracy'])
# 训练
model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data = (x_test, y_test), validation_freq=1)
model.summary()

运行后会先显示数据集中的前二十个数字
在这里插入图片描述
关闭数字展示窗口后开始训练,并看到训练的过程
在这里插入图片描述

这篇关于深度学习笔记(七)——基于Iris/MNIST数据集构建基础的分类网络算法实战的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/611903

相关文章

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

SQL Server跟踪自动统计信息更新实战指南

《SQLServer跟踪自动统计信息更新实战指南》本文详解SQLServer自动统计信息更新的跟踪方法,推荐使用扩展事件实时捕获更新操作及详细信息,同时结合系统视图快速检查统计信息状态,重点强调修... 目录SQL Server 如何跟踪自动统计信息更新:深入解析与实战指南 核心跟踪方法1️⃣ 利用系统目录

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

深入浅出SpringBoot WebSocket构建实时应用全面指南

《深入浅出SpringBootWebSocket构建实时应用全面指南》WebSocket是一种在单个TCP连接上进行全双工通信的协议,这篇文章主要为大家详细介绍了SpringBoot如何集成WebS... 目录前言为什么需要 WebSocketWebSocket 是什么Spring Boot 如何简化 We

java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)

《java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)》:本文主要介绍java中pdf模版填充表单踩坑的相关资料,OpenPDF、iText、PDFBox是三... 目录准备Pdf模版方法1:itextpdf7填充表单(1)加入依赖(2)代码(3)遇到的问题方法2:pd

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使