003-10-02【Spark官网思维笔记】香积寺旁老松树边马大爷家女儿大红用GPT学习Spark入门知识

本文主要是介绍003-10-02【Spark官网思维笔记】香积寺旁老松树边马大爷家女儿大红用GPT学习Spark入门知识,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

003-10-02【Spark官网思维笔记】香积寺旁老松树边马大爷家女儿大红用GPT学习Spark入门知识.

  • Spark 快速入门
    • 快速开始
      • 使用 Spark Shell 进行交互式分析:
      • 独立的应用程序
      • 其他
    • 1, 使用 Spark Shell 进行交互式分析
      • 1.1 基本
      • 1.2 有关Dataset操作的更多信息
      • 1.3 缓存
    • 2, 独立的应用程序
    • 3,其他
    • 4 思维导图

Spark 快速入门

快速开始

使用 Spark Shell 进行交互式分析:

基本
有关Dataset操作的更多信息
缓存

独立的应用程序

其他

本教程提供了 Spark 的使用快速介绍。我们将首先通过 Spark 的交互式 shell(Python 或 Scala)介绍 API,然后展示如何使用 Java、Scala 和 Python 编写应用程序。
要按照本指南进行操作,请首先从Spark 网站下载 Spark 的打包版本 。由于我们不会使用 HDFS,因此您可以下载适用于任何版本 Hadoop 的软件包。
需要注意的是,在Spark 2.0之前,Spark的主要编程接口是弹性分布式数据集(RDD)。Spark 2.0 之后,RDD 被 Dataset 取代,Dataset 与 RDD 一样是强类型的,但在底层有更丰富的优化。仍然支持 RDD 接口,您可以在RDD 编程指南中获得更完整的参考。但是,我们强烈建议您改用Dataset,它比RDD具有更好的性能。请参阅SQL 编程指南以获取有关Dataset的更多信息。

1, 使用 Spark Shell 进行交互式分析

1.1 基本

Spark 的 shell 提供了一种学习 API 的简单方法,以及交互式分析数据的强大工具。它可以在 Scala(在 Java VM 上运行,因此是使用现有 Java 库的好方法)或 Python 中使用。通过在 Spark 目录中运行以下命令来启动它:
./bin/spark-shell
Spark 的主要抽象是称为数据集的分布式项目集合。可以从 Hadoop 输入格式(例如 HDFS 文件)或通过转换其他数据集来创建数据集。让我们根据 Spark 源目录中的 README 文件的文本创建一个新的数据集:

scala> val textFile = spark.read.textFile(“README.md”)
textFile: org.apache.spark.sql.Dataset[String] = [value: string]
您可以通过调用某些操作直接从数据集中获取值,或者转换数据集以获取新的数据集。欲了解更多详细信息,请阅读API 文档。

scala> textFile.count() // Number of items in this Dataset
res0: Long = 126 // May be different from yours as README.md will change over time, similar to other outputs

scala> textFile.first() // First item in this Dataset
res1: String = # Apache Spark
现在让我们将此数据集转换为新的数据集。我们调用filter返回一个新的数据集,其中包含文件中项目的子集。

scala> val linesWithSpark = textFile.filter(line => line.contains(“Spark”))
linesWithSpark: org.apache.spark.sql.Dataset[String] = [value: string]
我们可以将转换和行动链接在一起:

scala> textFile.filter(line => line.contains(“Spark”)).count() // How many lines contain “Spark”?
res3: Long = 15

1.2 有关Dataset操作的更多信息

数据集操作和转换可用于更复杂的计算。假设我们想要找到单词最多的行:
scala> textFile.map(line => line.split(" ").size).reduce((a, b) => if (a > b) a else b)
res4: Long = 15
首先将一行映射到一个整数值,创建一个新的数据集。reduce调用该数据集来查找最大字数。map和 的参数reduce是 Scala 函数文字(闭包),并且可以使用任何语言功能或 Scala/Java 库。例如,我们可以轻松调用其他地方声明的函数。我们将使用Math.max()函数来使代码更容易理解:

scala> import java.lang.Math
import java.lang.Math

scala> textFile.map(line => line.split(" ").size).reduce((a, b) => Math.max(a, b))
res5: Int = 15
一种常见的数据流模式是由 Hadoop 推广的 MapReduce。Spark 可以轻松实现 MapReduce 流程:

scala> val wordCounts = textFile.flatMap(line => line.split(" ")).groupByKey(identity).count()
wordCounts: org.apache.spark.sql.Dataset[(String, Long)] = [value: string, count(1): bigint]
在这里,我们调用将行flatMap数据集转换为单词数据集,然后组合groupByKey并count计算文件中每个单词的计数作为(字符串,长整型)对的数据集。要在 shell 中收集字数统计,我们可以调用collect:

scala> wordCounts.collect()
res6: Array[(String, Int)] = Array((means,1), (under,2), (this,3), (Because,1), (Python,2), (agree,1), (cluster.,1), …)
说明, identity 是匿名函数, 函数作用是对传入的值原样返回,此处表示key不变。

1.3 缓存

Spark 还支持将数据集拉入集群范围的内存缓存中。当重复访问数据时(例如查询小型“热”数据集或运行 PageRank 等迭代算法时),这非常有用。作为一个简单的示例,让我们将linesWithSpark数据集标记为要缓存:
scala> linesWithSpark.cache()
res7: linesWithSpark.type = [value: string]

scala> linesWithSpark.count()
res8: Long = 15

scala> linesWithSpark.count()
res9: Long = 15

使用 Spark 来探索和缓存 100 行文本文件似乎很愚蠢。有趣的是,这些相同的函数可以用于非常大的数据集,即使它们分布在数十或数百个节点上。您还可以通过连接bin/spark-shell到集群以交互方式执行此操作,如RDD 编程指南中所述。

2, 独立的应用程序

假设我们希望使用 Spark API 编写一个独立的应用程序。我们将演练一个使用 Scala(使用 sbt)、Java(使用 Maven)和 Python(pip)的简单应用程序。
我们将在 Scala 中创建一个非常简单的 Spark 应用程序——事实上,它非常简单,因此被命名为SimpleApp.scala:

/* SimpleApp.scala */
import org.apache.spark.sql.SparkSession

object SimpleApp {
def main(args: Array[String]) {
val logFile = “YOUR_SPARK_HOME/README.md” // Should be some file on your system
val spark = SparkSession.builder.appName(“Simple Application”).getOrCreate()
val logData = spark.read.textFile(logFile).cache()
val numAs = logData.filter(line => line.contains(“a”)).count()
val numBs = logData.filter(line => line.contains(“b”)).count()
println(s"Lines with a: $numAs, Lines with b: $numBs")
spark.stop()
}
}
请注意,应用程序应该定义main()方法而不是扩展scala.App。的子类scala.App可能无法正常工作。

该程序仅计算 Spark README 中包含“a”的行数和包含“b”的行数。请注意,您需要将 YOUR_SPARK_HOME 替换为 Spark 的安装位置。与前面使用 Spark shell 的示例不同,Spark shell 会初始化自己的 SparkSession,而我们将 SparkSession 初始化为程序的一部分。

我们调用SparkSession.builder构造一个[[SparkSession]],然后设置应用程序名称,最后调用getOrCreate获取[[SparkSession]]实例。

我们的应用程序依赖于 Spark API,因此我们还将包含一个 sbt 配置文件 , build.sbt它解释了 Spark 是一个依赖项。该文件还添加了 Spark 依赖的存储库:

name := “Simple Project”

version := “1.0”

scalaVersion := “2.11.8”

libraryDependencies += “org.apache.spark” %% “spark-sql” % “2.3.0”
为了使 sbt 正常工作,我们需要 根据典型的目录结构进行SimpleApp.scala布局。build.sbt一旦完成,我们就可以创建一个包含应用程序代码的 JAR 包,然后使用该spark-submit脚本来运行我们的程序。

// Your directory layout should look like this
$ find .
.
./build.sbt
./src
./src/main
./src/main/scala
./src/main/scala/SimpleApp.scala

// Package a jar containing your application
$ sbt package

[info] Packaging {…}/{…}/target/scala-2.11/simple-project_2.11-1.0.jar

// Use spark-submit to run your application
$ YOUR_SPARK_HOME/bin/spark-submit
–class “SimpleApp”
–master local[4]
target/scala-2.11/simple-project_2.11-1.0.jar

Lines with a: 46, Lines with b: 23

3,其他

恭喜您运行您的第一个 Spark 应用程序!

要深入了解 API,请从RDD 编程指南和SQL 编程指南开始,或者参阅其他组件的“编程指南”菜单。
要在集群上运行应用程序,请参阅部署概述。
最后,Spark 在目录中包含了几个示例examples(Scala、 Java、 Python、 R)。您可以按如下方式运行它们:
// For Scala and Java, use run-example:
./bin/run-example SparkPi

// For Python examples, use spark-submit directly:
./bin/spark-submit examples/src/main/python/pi.py

// For R examples, use spark-submit directly:
./bin/spark-submit examples/src/main/r/dataframe.R

4 思维导图

思维笔记思维导图模式:
在这里插入图片描述

这篇关于003-10-02【Spark官网思维笔记】香积寺旁老松树边马大爷家女儿大红用GPT学习Spark入门知识的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/597005

相关文章

从入门到精通详解Python虚拟环境完全指南

《从入门到精通详解Python虚拟环境完全指南》Python虚拟环境是一个独立的Python运行环境,它允许你为不同的项目创建隔离的Python环境,下面小编就来和大家详细介绍一下吧... 目录什么是python虚拟环境一、使用venv创建和管理虚拟环境1.1 创建虚拟环境1.2 激活虚拟环境1.3 验证虚

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

Java List 使用举例(从入门到精通)

《JavaList使用举例(从入门到精通)》本文系统讲解JavaList,涵盖基础概念、核心特性、常用实现(如ArrayList、LinkedList)及性能对比,介绍创建、操作、遍历方法,结合实... 目录一、List 基础概念1.1 什么是 List?1.2 List 的核心特性1.3 List 家族成

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

c++日志库log4cplus快速入门小结

《c++日志库log4cplus快速入门小结》文章浏览阅读1.1w次,点赞9次,收藏44次。本文介绍Log4cplus,一种适用于C++的线程安全日志记录API,提供灵活的日志管理和配置控制。文章涵盖... 目录简介日志等级配置文件使用关于初始化使用示例总结参考资料简介log4j 用于Java,log4c

史上最全MybatisPlus从入门到精通

《史上最全MybatisPlus从入门到精通》MyBatis-Plus是MyBatis增强工具,简化开发并提升效率,支持自动映射表名/字段与实体类,提供条件构造器、多种查询方式(等值/范围/模糊/分页... 目录1.简介2.基础篇2.1.通用mapper接口操作2.2.通用service接口操作3.进阶篇3

Python自定义异常的全面指南(入门到实践)

《Python自定义异常的全面指南(入门到实践)》想象你正在开发一个银行系统,用户转账时余额不足,如果直接抛出ValueError,调用方很难区分是金额格式错误还是余额不足,这正是Python自定义异... 目录引言:为什么需要自定义异常一、异常基础:先搞懂python的异常体系1.1 异常是什么?1.2

Python实现Word转PDF全攻略(从入门到实战)

《Python实现Word转PDF全攻略(从入门到实战)》在数字化办公场景中,Word文档的跨平台兼容性始终是个难题,而PDF格式凭借所见即所得的特性,已成为文档分发和归档的标准格式,下面小编就来和大... 目录一、为什么需要python处理Word转PDF?二、主流转换方案对比三、五套实战方案详解方案1:

Spring WebClient从入门到精通

《SpringWebClient从入门到精通》本文详解SpringWebClient非阻塞响应式特性及优势,涵盖核心API、实战应用与性能优化,对比RestTemplate,为微服务通信提供高效解决... 目录一、WebClient 概述1.1 为什么选择 WebClient?1.2 WebClient 与

Spring Boot 与微服务入门实战详细总结

《SpringBoot与微服务入门实战详细总结》本文讲解SpringBoot框架的核心特性如快速构建、自动配置、零XML与微服务架构的定义、演进及优缺点,涵盖开发环境准备和HelloWorld实战... 目录一、Spring Boot 核心概述二、微服务架构详解1. 微服务的定义与演进2. 微服务的优缺点三