python机器学习之降维算法PCA对手写数字数据集的降维案例

2024-01-04 07:38

本文主要是介绍python机器学习之降维算法PCA对手写数字数据集的降维案例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

PCA对手写数字数据集的降维案例

数据集获取地址:->这里下载

导入需要的模块和库

from sklearn.decomposition import PCA
from sklearn.ensemble import RandomForestClassifier as RFC
from sklearn.model_selection import cross_val_score
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np

导入数据,探索数据

data = pd.read_csv("../数据/digit recognizor.csv")
x = data.iloc[:,1:]
y = data.iloc[:,0]

查看数据维度

data.shape
x.shape

在这里插入图片描述
画累计方差贡献率曲线,找最佳降维后维度的范围

pca_line = PCA().fit(x)#实例化
plt.figure(figsize=[20,5])#创建画布
plt.plot(np.cumsum(pca_line.explained_variance_ratio_))#折线图
plt.xlabel("number of components")#x轴标题
plt.ylabel("cumulative explainec variance")#y轴标题
plt.show()#显示图像

在这里插入图片描述
降维后维度的学习曲线,继续缩小最佳维度的范围

score = []
for i in range(1,101,10):x_dr = PCA(i).fit_transform(x)once = cross_val_score(RFC(n_estimators=10,random_state=0),x_dr,y,cv = 5).mean()score.append(once)plt.figure(figsize=[20,5])
plt.plot(range(1,101,10),score)
plt.show()

在这里插入图片描述
细化学习曲线,找出降维后的最佳维度

score = []
for i in range(10,25):x_dr = PCA(i).fit_transform(x)once = cross_val_score(RFC(n_estimators=10,random_state=0),x_dr,y,cv = 5).mean()score.append(once)plt.figure(figsize=[20,5])
plt.plot(range(10,25),score)
plt.show()

在这里插入图片描述
发现在23时有最大值,所以我们选择使用23作为PCA维度.

导入找出的最佳维度进行降维,查看模型效果

x_dr = PCA(23).fit_transform(x)cross_val_score(RFC(n_estimators = 100,random_state=0),x_dr,y,cv=5).mean()

在这里插入图片描述
型的效果还好,跑出了94.55%的水平,但是还没有我们使用嵌入法特征选择后的96%高.

特征数量已经不足原来的3%,换模型怎么样,换成KNN

from sklearn.neighbors import KNeighborsClassifier as KNN
cross_val_score(KNN(),x_dr,y,cv=5).mean()

在这里插入图片描述
KNN 的K值学习曲线

score = []
for i in range(10):x_dr = PCA(23).fit_transform(x)once = cross_val_score(KNN(i+1),x_dr,y,cv = 5).mean()score.append(once)plt.figure(figsize=[20,5])
plt.plot(range(10),score)
plt.show()

在这里插入图片描述
使用交叉验证求出模型的结果

cross_val_score(KNN(4),x_dr,y,cv = 5).mean()#交叉验证求出模型的效果

在这里插入图片描述

定下超参数后,模型的效果如何,模型运行时间如何

%%timeitcross_val_score(KNN(4),x_dr,y,cv = 5).mean()#交叉验证求出模型的效果

小结:
可以发现,原本785列的特征被我们减到23列以后,用KNN跑出了目前位置这个数据集上最好的结果.
PCA为我们提供了无限的可能,再也不用担心数据量过于庞大而被迫选择复杂的模型了

这篇关于python机器学习之降维算法PCA对手写数字数据集的降维案例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/568612

相关文章

使用python生成固定格式序号的方法详解

《使用python生成固定格式序号的方法详解》这篇文章主要为大家详细介绍了如何使用python生成固定格式序号,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... 目录生成结果验证完整生成代码扩展说明1. 保存到文本文件2. 转换为jsON格式3. 处理特殊序号格式(如带圈数字)4

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装