机器学习与深度学习——使用paddle实现随机梯度下降算法SGD对波士顿房价数据进行线性回归和预测

本文主要是介绍机器学习与深度学习——使用paddle实现随机梯度下降算法SGD对波士顿房价数据进行线性回归和预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 机器学习与深度学习——使用paddle实现随机梯度下降算法SGD对波士顿房价数据进行线性回归和预测
    • 一、任务
    • 二、流程
    • 三、完整代码
    • 四、代码解析
    • 五、效果截图

机器学习与深度学习——使用paddle实现随机梯度下降算法SGD对波士顿房价数据进行线性回归和预测

随机梯度下降(SGD)也称为增量梯度下降,是一种迭代方法,用于优化可微分目标函数。该方法通过在小批量数据上计算损失函数的梯度而迭代地更新权重与偏置项。SGD在高度非凸的损失表面上远远超越了朴素梯度下降法,这种简单的爬山法技术已经主导了现代的非凸优化。

一、任务

使用Paddle实现随机梯度下降(SGD)算法对波士顿房价数据进行线性回归的训练,给出每次迭代的权重、损失和梯度,并进行房价预测值与真实房价值对比。

二、流程

1、导入必要的库和模块:PaddlePaddle深度学习框架、numpy、os等常用的包和库。

2、读取数据并进行预处理。将数据进行归一化处理,将训练集和测试集划分为7:3的比例。

3、定义线性回归模型。自定义类 Regressor 继承自 paddle.nn.Layer ,初始化函数中定义了一个全连接层。该全连接层的输入维度为13,输出维度为1。

4、构建模型并训练。调用 Regressor() 函数生成模型,使用随机梯度下降法进行训练。。

5、模型预测。运用之前训练好的模型进行前向计算得到预测结果。

6、反归一化处理。进行反归一化处理,得到原始的房价估计值。

输出结果。将得到的预测结果和真实标签值进行比较,并输出预测房价的结果和真实房价结果。

三、完整代码

使用Paddle实现随机梯度下降(SGD)算法对波士顿房价数据进行线性回归的训练,给出每次迭代的权重、损失和梯度,并进行房价预测值与真实房价值对比。

#导入必要的包和库
import paddle
from paddle.nn import Linear
import paddle.nn.functional as F
import numpy as np
import os
import randomdef load_data():# 从文件导入数据datafile = './work/housing.data'data = np.fromfile(datafile, sep=' ', dtype=np.float32)# 每条数据包括14项,其中前面13项是影响因素,第14项是相应的房屋价格中位数feature_names = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', \'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV']feature_num = len(feature_names)# 将原始数据进行Reshape,变成[N, 14]这样的形状data = data.reshape([data.shape[0] // feature_num, feature_num])# 这里使用70%的数据做训练,30%的数据做测试ratio = 0.7offset = int(data.shape[0] * ratio)training_data = data[:offset]# 计算train数据集的最大值,最小值,平均值maximums, minimums, avgs = training_data.max(axis=0), training_data.min(axis=0), \training_data.sum(axis=0) / training_data.shape[0]# 记录数据的归一化参数,在预测时对数据做归一化global max_valuesglobal min_valuesglobal avg_valuesmax_values = maximumsmin_values = minimumsavg_values = avgs# 对数据进行归一化处理for i in range(feature_num):data[:, i] = (data[:, i] - avgs[i]) / (maximums[i] - minimums[i])# 训练集和测试集的划分比例training_data = data[:offset]test_data = data[offset:]return training_data, test_data# 验证数据集读取程序的正确性
training_data, test_data = load_data()
print(training_data.shape)
print(training_data[1,:])class Regressor(paddle.nn.Layer):# self代表类的实例自身def __init__(self):# 初始化父类中的一些参数super(Regressor, self).__init__()# 定义一层全连接层,输入维度是13,输出维度是1self.fc = Linear(in_features=13, out_features=1)# 网络的前向计算def forward(self, inputs):x = self.fc(inputs)return x# 声明定义好的线性回归模型
model = Regressor()
# 开启模型训练模式
model.train()
# 加载数据
training_data, test_data = load_data()
# 定义优化算法,使用随机梯度下降SGD
# 学习率设置为0.01
opt = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())EPOCH_NUM = 10  # 设置外层循环次数
BATCH_SIZE = 10  # 设置batch大小# 定义外层循环
for epoch_id in range(EPOCH_NUM):# 在每轮迭代开始之前,将训练数据的顺序随机的打乱np.random.shuffle(training_data)# 将训练数据进行拆分,每个batch包含10条数据mini_batches = [training_data[k:k + BATCH_SIZE] for k in range(0, len(training_data), BATCH_SIZE)]# 定义内层循环for iter_id, mini_batch in enumerate(mini_batches):x = np.array(mini_batch[:, :-1])  # 获得当前批次训练数据y = np.array(mini_batch[:, -1:])  # 获得当前批次训练标签(真实房价)# 将numpy数据转为飞桨动态图tensor的格式house_features = paddle.to_tensor(x)prices = paddle.to_tensor(y)# 前向计算predicts = model(house_features)# 计算损失loss = F.square_error_cost(predicts, label=prices)avg_loss = paddle.mean(loss)if iter_id % 20 == 0:print("epoch: {}, iter: {}, loss is: {}".format(epoch_id, iter_id, avg_loss.numpy()))# 反向传播,计算每层参数的梯度值avg_loss.backward()# 更新参数,根据设置好的学习率迭代一步opt.step()# 清空梯度变量,以备下一轮计算opt.clear_grad()# 保存模型参数,文件名为LR_model.pdparams
paddle.save(model.state_dict(), 'LR_model.pdparams')
print("模型保存成功,模型参数保存在LR_model.pdparams中")def load_one_example():# 从上边已加载的测试集中,随机选择一条作为测试数据idx = np.random.randint(0, test_data.shape[0])idx = -10one_data, label = test_data[idx, :-1], test_data[idx, -1]# 修改该条数据shape为[1,13]one_data = one_data.reshape([1, -1])return one_data, label# 参数为保存模型参数的文件地址
model_dict = paddle.load('LR_model.pdparams')
model.load_dict(model_dict)
model.eval()# 参数为数据集的文件地址
one_data, label = load_one_example()
# 将数据转为动态图的variable格式
one_data = paddle.to_tensor(one_data)
predict = model(one_data)# 对结果做反归一化处理
predict = predict * (max_values[-1] - min_values[-1]) + avg_values[-1]
# 对label数据做反归一化处理
label = label * (max_values[-1] - min_values[-1]) + avg_values[-1]print("预测房价结果:{}, 真实房价结果是: {}".format(predict.numpy(), label))

四、代码解析

  1. 外层循环(Epoch循环):

    pythonfor epoch_id in range(EPOCH_NUM):
    

    模型训练的外层循环,会遍历指定次数(EPOCH_NUM)的数据集。

  2. 训练数据的打乱和拆分:

    pythonnp.random.shuffle(training_data)
    mini_batches = [training_data[k:k + BATCH_SIZE] for k in range(0, len(training_data), BATCH_SIZE)]
    

    在每个 epoch 开始之前,随机打乱训练数据集。然后将数据集划分为小批次(mini-batches),每个批次包含 BATCH_SIZE 条数据。

  3. 内层循环(Batch循环):

    pythonfor iter_id, mini_batch in enumerate(mini_batches):
    

    每个 epoch 内部的循环,遍历每个小批次的数据。

  4. 数据处理:

    pythonx = np.array(mini_batch[:, :-1])  # 获得当前批次训练数据
    y = np.array(mini_batch[:, -1:])  # 获得当前批次训练标签(真实房价)
    house_features = paddle.to_tensor(x)
    prices = paddle.to_tensor(y)
    

    从当前小批次中分离出输入特征 x 和对应的标签 y,然后将它们转换为飞桨动态图的张量格式。

  5. 前向计算和损失计算:

    pythonpredicts = model(house_features)
    loss = F.square_error_cost(predicts, label=prices)
    avg_loss = paddle.mean(loss)
    

    通过模型进行前向计算,然后计算预测值与真实标签的均方误差损失。

  6. 打印损失信息:

    pythonif iter_id % 20 == 0:print("epoch: {}, iter: {}, loss is: {}".format(epoch_id, iter_id, avg_loss.numpy()))
    

    每隔一定步数打印当前的损失值,以便观察训练过程。

  7. 反向传播和参数更新:

    pythonavg_loss.backward()
    opt.step()
    opt.clear_grad()
    

    通过反向传播计算梯度,然后使用优化器(opt)更新模型参数

  8. 模型保存:

    pythonpaddle.save(model.state_dict(), 'LR_model.pdparams')
    

    在训练结束后,保存训练好的模型参数到文件中。

  9. 加载测试数据的函数:

    def load_one_example():# 从上边已加载的测试集中,随机选择一条作为测试数据idx = np.random.randint(0, test_data.shape[0])idx = -10one_data, label = test_data[idx, :-1], test_data[idx, -1]# 修改该条数据shape为[1,13]one_data = one_data.reshape([1, -1])return one_data, label
    

    用于从测试集中随机选择一条数据作为测试样本,并返回该样本的特征和标签。

# 参数为保存模型参数的文件地址
model_dict = paddle.load('LR_model.pdparams')
model.load_dict(model_dict)
model.eval()# 参数为数据集的文件地址
one_data, label = load_one_example()
# 将数据转为动态图的variable格式
one_data = paddle.to_tensor(one_data)
predict = model(one_data)# 对结果做反归一化处理
predict = predict * (max_values[-1] - min_values[-1]) + avg_values[-1]
# 对label数据做反归一化处理
label = label * (max_values[-1] - min_values[-1]) + avg_values[-1]print("预测房价结果:{}, 真实房价结果是: {}".format(predict.numpy(), label))

model_dict = paddle.load(‘LR_model.pdparams’): 从文件 ‘LR_model.pdparams’ 中加载保存的模型参数。

model.load_dict(model_dict): 将加载的模型参数字典加载到模型中。这个步骤将预训练好的参数应用到模型中。

model.eval(): 将模型设置为评估模式,这通常用于测试或推断阶段。

one_data, label = load_one_example(): 加载一个样本和其对应的标签。

one_data = paddle.to_tensor(one_data): 将输入数据 one_data 转换为 PaddlePaddle 动态图的 Variable 格式。。

predict = model(one_data): 使用加载的模型进行推断,得到预测结果 predict。

predict = predict * (max_values[-1] - min_values[-1]) + avg_values[-1]: 对模型的预测结果进行反归一化处理。

label = label * (max_values[-1] - min_values[-1]) + avg_values[-1]: 对标签数据进行相同的反归一化处理,以便比较预测结果和真实标签。

最后,打印出预测结果和真实标签:print(“预测房价结果:{}, 真实房价结果是: {}”.format(predict.numpy(), label))。这里使用 numpy() 方法将 PaddlePaddle 的 Tensor 转换为 NumPy 数组,以便更方便地打印结果。

五、效果截图

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
保存模型参数,文件名为LR_model.pdparams

paddle.save(model.state_dict(), 'LR_model.pdparams')
print("模型保存成功,模型参数保存在LR_model.pdparams中")

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

这篇关于机器学习与深度学习——使用paddle实现随机梯度下降算法SGD对波士顿房价数据进行线性回归和预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/564394

相关文章

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

C#中lock关键字的使用小结

《C#中lock关键字的使用小结》在C#中,lock关键字用于确保当一个线程位于给定实例的代码块中时,其他线程无法访问同一实例的该代码块,下面就来介绍一下lock关键字的使用... 目录使用方式工作原理注意事项示例代码为什么不能lock值类型在C#中,lock关键字用于确保当一个线程位于给定实例的代码块中时