基于简化版python+VGG+MiniGoogLeNet的智能43类交通标志识别—深度学习算法应用(含全部python工程源码)+数据集+模型(一)

本文主要是介绍基于简化版python+VGG+MiniGoogLeNet的智能43类交通标志识别—深度学习算法应用(含全部python工程源码)+数据集+模型(一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 前言
  • 总体设计
    • 系统整体结构图
    • 系统流程图
  • 运行环境
    • Python环境
    • Anaconda环境
  • 模块实现
    • 1. 数据预处理
  • 相关其它博客
  • 工程源代码下载
  • 其它资料下载


在这里插入图片描述

前言

本项目专注于解决出国自驾游特定场景下的交通标志识别问题。借助Kaggle上的丰富交通标志数据集,我们采用了VGG和GoogLeNet等卷积神经网络模型进行训练。通过对网络架构和参数的巧妙调整,致力于提升模型在不同类型交通标志识别方面的准确率。

首先,我们选择了Kaggle上的高质量交通标志数据集,以确保训练数据的多样性和丰富性。接着,采用VGG和GoogLeNet等先进的卷积神经网络模型,这些模型在图像分类任务上表现卓越。

通过巧妙的网络架构和参数调整,本项目致力于提高模型的准确率。我们深入研究了不同交通标志的特征,使网络更有针对性地学习这些特征,从而增强模型在复杂场景下的泛化能力。

最终,本项目旨在为出国自驾游的用户提供一个高效而准确的交通标志识别系统,以提升驾驶安全性和用户体验。这一创新性的解决方案有望在自动驾驶和智能导航等领域产生深远的影响。

总体设计

本部分包括系统整体结构图和系统流程图。

系统整体结构图

系统整体结构如图所示。

在这里插入图片描述

系统流程图

系统流程如图所示。

在这里插入图片描述

运行环境

本部分包括 Python 环境、Anaconda环境。

Python环境

需要Python 3.6及以上配置,在Windows环境下推荐下载Anaconda完成Python所需环境的配置,下载地址为https://www.anaconda.com/,也可下载虚拟机在Linux环境下运行代码。

鼠标右击“我的电脑”,单击“属性”,选择高级系统设置。单击“环境变量”,找到系统变量中的Path,单击“编辑”然后新建,将Python解释器所在路径粘贴并确定。

Anaconda环境

下载Anaconda,下载地址为:https://www.anaconda.com/。

打开Anaconda Prompt,用清华镜像安装CPU版本的TensorFlow,输入命令:

pip install tensorflow==1.14.0 -i https://pypi.tuna.tsinghua.edu.cn/simple

需要安装其他库,输入以下命令:

pip install numpy -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install scikit-learn -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install scikit-image -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install imutils -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install matplotlib -i https://pypi.tuna.tsinghua.edu.cn/simple

模块实现

本项目包括3个模块:数据预处理、模型构建、模型训练及保存。下面分别给出各模块的功能介绍及相关代码。

1. 数据预处理

本项目使用德国交通标志识别基准数据集(GTSRB),此数据集包含50000张在各种环境下拍摄的交通标志图像,下载地址为:https://www.kaggle.com/datasets/meowmeowmeowmeowmeow/gtsrb-german-traffic-sign。数据集下载完成后,导入数据并进行预处理,相关代码如下:

import matplotlib
from tensorflow.keras.preprocessing.image importlImageDataGenerator
from tensorflow.keras.utils import to categorical
from tensorflow,keras.optimizers import Adam
from sklearn.metrics import classification_report
from skimage import transform
from skimage import exposure
from skimage import io
import matplotlib.pyplot as plt
import numpy as np
import random
import os

GTSRB数据集已经划分为训练集和测试集,定义load_split()函数导入训练集、测试集的图像数据和标签。因为属于同一类的图像相邻,需要打乱图像以保证训练效果。通过统计分析得到全部图像的分辨率,如图所示,有极少数图像像素超过100×100。为便于训练,将图像像素统一调整为32×32。由于图像的对比度较低,调用skimage库的equalize_adapthist()函数,使用自适应直方图均衡算法(CLAHE)增加图像的对比度。

在这里插入图片描述

load_split()函数的相关代码如下:

def load_split(basePath, csvPath):#初始化data和labels列表data = []labels = []#加载存有训练集和测试集图像存储地址和标签的csv表格,去除空格,通过换行符识别各行
#并去除第一行标题行rows = open(csvPath).read().strip().split("\n")[1:]#打乱rows的各行random.shuffle(rows)for (i, row) in enumerate(rows):#每导入1000张图像后提示if i > 0 and i % 1000 == 0:print("[INFO] processed {} total images".format(i))#取csv表格最后的两列:标签和存储地址(label, imagePath) = row.strip().split(",")[-2:]#写出完整的图像存储地址imagePath = os.path.sep.join([basePath, imagePath])#读取图像数据image = io.imread(imagePath)#统一将图像调整为32*32像素image = transform.resize(image, (32, 32))#增加图像的对比度image = exposure.equalize_adapthist(image, clip_limit=0.1)#将当前图像的数据和标签添加到data和labels列表data.append(image)labels.append(int(label))data = np.array(data)labels = np.array(labels)return (data, labels)

导入图像各类别的具体名称,通过调用load_split()函数获得训练集、测试集的图像数据和标签,将图像的数据范围从[0,225]调整为[0,1],图像标签One-Hot编码,相关代码如下:

#从signnames.csv表格中获取图像各类别的具体名称,该表格共两列,第二列是类别名称
labelNames = open("signnames.csv").read().strip().split("\n")[1:]
labelNames = [l.split(",")[1] for l in labelNames]
trainPath = os.path.sep.join(['gtsrb-german-traffic-sign', "Train.csv"])
testPath = os.path.sep.join(['gtsrb-german-traffic-sign', "Test.csv"])
print("[INFO] loading training and testing data...")
#通过调用load_split()函数获得训练集、测试集的图像数据和标签
(trainX, trainY) = load_split('gtsrb-german-traffic-sign', trainPath)
(testX, testY) = load_split('gtsrb-german-traffic-sign', testPath)
#把RGB图像的数据范围从[0,225]调整为[0,1]
trainX = trainX.astype("float32") / 255.0
testX = testX.astype("float32") / 255.0
#One-hot编码图像的标签
numLabels = len(np.unique(trainY))
trainY = to_categorical(trainY, numLabels)
testY = to_categorical(testY, numLabels)

相关其它博客

基于简化版python+VGG+MiniGoogLeNet的智能43类交通标志识别—深度学习算法应用(含全部python工程源码)+数据集+模型(二)

基于简化版python+VGG+MiniGoogLeNet的智能43类交通标志识别—深度学习算法应用(含全部python工程源码)+数据集+模型(三)

工程源代码下载

详见本人博客资源下载页


其它资料下载

如果大家想继续了解人工智能相关学习路线和知识体系,欢迎大家翻阅我的另外一篇博客《重磅 | 完备的人工智能AI 学习——基础知识学习路线,所有资料免关注免套路直接网盘下载》
这篇博客参考了Github知名开源平台,AI技术平台以及相关领域专家:Datawhale,ApacheCN,AI有道和黄海广博士等约有近100G相关资料,希望能帮助到所有小伙伴们。

这篇关于基于简化版python+VGG+MiniGoogLeNet的智能43类交通标志识别—深度学习算法应用(含全部python工程源码)+数据集+模型(一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/559237

相关文章

Django开发时如何避免频繁发送短信验证码(python图文代码)

《Django开发时如何避免频繁发送短信验证码(python图文代码)》Django开发时,为防止频繁发送验证码,后端需用Redis限制请求频率,结合管道技术提升效率,通过生产者消费者模式解耦业务逻辑... 目录避免频繁发送 验证码1. www.chinasem.cn避免频繁发送 验证码逻辑分析2. 避免频繁

批量导入txt数据到的redis过程

《批量导入txt数据到的redis过程》用户通过将Redis命令逐行写入txt文件,利用管道模式运行客户端,成功执行批量删除以Product*匹配的Key操作,提高了数据清理效率... 目录批量导入txt数据到Redisjs把redis命令按一条 一行写到txt中管道命令运行redis客户端成功了批量删除k

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

深度解析Spring Security 中的 SecurityFilterChain核心功能

《深度解析SpringSecurity中的SecurityFilterChain核心功能》SecurityFilterChain通过组件化配置、类型安全路径匹配、多链协同三大特性,重构了Spri... 目录Spring Security 中的SecurityFilterChain深度解析一、Security

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.