数据分析-23--糖尿病预测(线性回归模型)(包含数据代码)

2023-12-28 21:52

本文主要是介绍数据分析-23--糖尿病预测(线性回归模型)(包含数据代码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 0. 数据代码下载
    • 1. 项目介绍
    • 2. 数据处理
      • 1. 导入数据
      • 2. 处理数据
    • 3. 建立模型
    • 4. 考察单个特征

0. 数据代码下载

关注公众号:『AI学习星球
回复:糖尿病预测 即可获取数据下载。
算法学习4对1辅导论文辅导核心期刊可以通过公众号或➕v:codebiubiubiu滴滴我
在这里插入图片描述


1. 项目介绍

本次实验的主要内容是使用回归分析和聚类分析来预测某人患糖尿病的可能性和身体的糖尿病指数。

本次数据分析实战,对糖尿病数据集进行回归分析。

sklearn.datasets 包提供了一些小的数据集,可用于机器学习入门,见下图。

导入toy数据的方法介绍任务数据规模
load_boston()加载和返回一个boston房屋价格的数据集回归506*13
load_iris([return_X_y])加载和返回一个鸢尾花数据集分类150*4
load_diabetes()加载和返回一个糖尿病数据集回归442*10
load_digits([n_class])加载和返回一个手写字数据集分类1797*64
load_linnerud()加载和返回一个健身数据集多分类20

2. 数据处理

1. 导入数据

导入数据分析常用包

# 导数据分析常用包
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

导包获取糖尿病数据集

from sklearn.datasets import load_diabetes  
data_diabetes = load_diabetes()    
print(data_diabetes) 

我们先看一下数据是什么样:
diabetes 是一个关于糖尿病的数据集, 该数据集包括442个病人的生理数据及一年以后的病情发展情况。

在这里插入图片描述
从结果可以看到,这个数据集是个字典形式,三个key值,分别是['data' , 'feature_names' , 'target']

为了方便后续处理数据,现在将这个字典形式的数据集进行拆分。

data =  data_diabetes['data']
target = data_diabetes['target']
feature_names = data_diabetes['feature_names']

现在三个数据都是numpy的一维数据形式,将她们组合成dataframe,可以更直观地观察数据

df =  pd.DataFrame(data,columns = feature_names)
df.head()  # 查看前几行数据

在这里插入图片描述

2. 处理数据

查看数据集的基本信息

df.info() 

在这里插入图片描述
数据集共442条信息,特征值总共10项, 如下:

  • age:年龄
  • sex:性别
  • bmi = body mass index:身体质量指数,是衡量是否肥胖和标准体重的重要指标,理想BMI(18.5~23.9) = 体重(单位Kg) ÷ 身高的平方 (单位m)
  • bp = blood pressure :血压
  • s1,s2,s3,s4,s4,s6 (六种血清的化验数据)

3. 建立模型

  1. 抽取训练集合测试集
from sklearn.model_selection import train_test_split
train_X,test_X,train_Y,test_Y =  train_test_split(data,target,train_size =0.8)
  1. 建立模型
from sklearn.linear_model import LinearRegression
model = LinearRegression()
  1. 训练数据
model.fit(train_X,train_Y)
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)
  1. 评估模型
model.score(train_X,train_Y)

输出结果 : 0.51298922173144801

  • 模型评估结果只有0.5左右,不是很高,说明变量之间的因果关系不是很强。
  • 一般这种情况下,我们会考察 单个特征值 与 结果标签 之间的相关关系。

4. 考察单个特征

考察单个特征值与结果之间的关系,以图表形式展示

  1. 取出特征值
df.columns

Index([‘age’, ‘sex’, ‘bmi’, ‘bp’, ‘s1’, ‘s2’, ‘s3’, ‘s4’, ‘s5’, ‘s6’], dtype=‘object’)

  1. 循环对每个特征值进行建模训练,作图
# 建立画板,作图5行2列的图
plt.figure(figsize=(2*6,5*5))
for i,col in enumerate(df.columns):  #enumerate 枚举train_X = df.loc[:,col].values.reshape(-1,1)    
# 每一次循环,都取出datafram中的一列数据,是一维Series数据格式,但是线性回归模型要求传入的是一个二维数据,因此利用reshape修改其形状train_Y = targetlinear_model = LinearRegression()    # 构建模型linear_model.fit(train_X,train_Y)    #训练模型score = linear_model.score(train_X,train_Y)   # 评估模型
#  以训练数据为X轴,标记为Y 轴,画出散点图,直观地看每个特征和标记直接的关系axes = plt.subplot(5,2,i+1)plt.scatter(train_X,train_Y)
# 画出每一个特征训练模型得到的拟合直线 y= kx + bk =  linear_model.coef_     # 回归系数b =  linear_model.intercept_   # 截距x = np.linspace(train_X.min(),train_X.max(),100)y = k * x + b
# 作图plt.plot(x,y,c='red')axes.set_title(col + ':' + str(score))
plt.show()

在这里插入图片描述

总结
从以上分析可知,单独看所有特征的训练结果,并不没有得到有效信息,我们拆分各个特征与指标的关系,可以看出:

  • bmi与糖尿病的相关性非常高,bp也有一定的关系,但是是否是直接关系,还是间接关系,有待深入考察。
  • 其他血清指标多少都和糖尿病有些关系,有的相关性强,有的相关性弱。

关注公众号:『AI学习星球
回复:糖尿病预测 即可获取数据下载。
算法学习4对1辅导论文辅导核心期刊可以通过公众号或➕v:codebiubiubiu滴滴我
在这里插入图片描述

这篇关于数据分析-23--糖尿病预测(线性回归模型)(包含数据代码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/547431

相关文章

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

Python实现MQTT通信的示例代码

《Python实现MQTT通信的示例代码》本文主要介绍了Python实现MQTT通信的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 安装paho-mqtt库‌2. 搭建MQTT代理服务器(Broker)‌‌3. pytho

MySQL进行数据库审计的详细步骤和示例代码

《MySQL进行数据库审计的详细步骤和示例代码》数据库审计通过触发器、内置功能及第三方工具记录和监控数据库活动,确保安全、完整与合规,Java代码实现自动化日志记录,整合分析系统提升监控效率,本文给大... 目录一、数据库审计的基本概念二、使用触发器进行数据库审计1. 创建审计表2. 创建触发器三、Java

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I