数据分析-23--糖尿病预测(线性回归模型)(包含数据代码)

2023-12-28 21:52

本文主要是介绍数据分析-23--糖尿病预测(线性回归模型)(包含数据代码),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 0. 数据代码下载
    • 1. 项目介绍
    • 2. 数据处理
      • 1. 导入数据
      • 2. 处理数据
    • 3. 建立模型
    • 4. 考察单个特征

0. 数据代码下载

关注公众号:『AI学习星球
回复:糖尿病预测 即可获取数据下载。
算法学习4对1辅导论文辅导核心期刊可以通过公众号或➕v:codebiubiubiu滴滴我
在这里插入图片描述


1. 项目介绍

本次实验的主要内容是使用回归分析和聚类分析来预测某人患糖尿病的可能性和身体的糖尿病指数。

本次数据分析实战,对糖尿病数据集进行回归分析。

sklearn.datasets 包提供了一些小的数据集,可用于机器学习入门,见下图。

导入toy数据的方法介绍任务数据规模
load_boston()加载和返回一个boston房屋价格的数据集回归506*13
load_iris([return_X_y])加载和返回一个鸢尾花数据集分类150*4
load_diabetes()加载和返回一个糖尿病数据集回归442*10
load_digits([n_class])加载和返回一个手写字数据集分类1797*64
load_linnerud()加载和返回一个健身数据集多分类20

2. 数据处理

1. 导入数据

导入数据分析常用包

# 导数据分析常用包
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

导包获取糖尿病数据集

from sklearn.datasets import load_diabetes  
data_diabetes = load_diabetes()    
print(data_diabetes) 

我们先看一下数据是什么样:
diabetes 是一个关于糖尿病的数据集, 该数据集包括442个病人的生理数据及一年以后的病情发展情况。

在这里插入图片描述
从结果可以看到,这个数据集是个字典形式,三个key值,分别是['data' , 'feature_names' , 'target']

为了方便后续处理数据,现在将这个字典形式的数据集进行拆分。

data =  data_diabetes['data']
target = data_diabetes['target']
feature_names = data_diabetes['feature_names']

现在三个数据都是numpy的一维数据形式,将她们组合成dataframe,可以更直观地观察数据

df =  pd.DataFrame(data,columns = feature_names)
df.head()  # 查看前几行数据

在这里插入图片描述

2. 处理数据

查看数据集的基本信息

df.info() 

在这里插入图片描述
数据集共442条信息,特征值总共10项, 如下:

  • age:年龄
  • sex:性别
  • bmi = body mass index:身体质量指数,是衡量是否肥胖和标准体重的重要指标,理想BMI(18.5~23.9) = 体重(单位Kg) ÷ 身高的平方 (单位m)
  • bp = blood pressure :血压
  • s1,s2,s3,s4,s4,s6 (六种血清的化验数据)

3. 建立模型

  1. 抽取训练集合测试集
from sklearn.model_selection import train_test_split
train_X,test_X,train_Y,test_Y =  train_test_split(data,target,train_size =0.8)
  1. 建立模型
from sklearn.linear_model import LinearRegression
model = LinearRegression()
  1. 训练数据
model.fit(train_X,train_Y)
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)
  1. 评估模型
model.score(train_X,train_Y)

输出结果 : 0.51298922173144801

  • 模型评估结果只有0.5左右,不是很高,说明变量之间的因果关系不是很强。
  • 一般这种情况下,我们会考察 单个特征值 与 结果标签 之间的相关关系。

4. 考察单个特征

考察单个特征值与结果之间的关系,以图表形式展示

  1. 取出特征值
df.columns

Index([‘age’, ‘sex’, ‘bmi’, ‘bp’, ‘s1’, ‘s2’, ‘s3’, ‘s4’, ‘s5’, ‘s6’], dtype=‘object’)

  1. 循环对每个特征值进行建模训练,作图
# 建立画板,作图5行2列的图
plt.figure(figsize=(2*6,5*5))
for i,col in enumerate(df.columns):  #enumerate 枚举train_X = df.loc[:,col].values.reshape(-1,1)    
# 每一次循环,都取出datafram中的一列数据,是一维Series数据格式,但是线性回归模型要求传入的是一个二维数据,因此利用reshape修改其形状train_Y = targetlinear_model = LinearRegression()    # 构建模型linear_model.fit(train_X,train_Y)    #训练模型score = linear_model.score(train_X,train_Y)   # 评估模型
#  以训练数据为X轴,标记为Y 轴,画出散点图,直观地看每个特征和标记直接的关系axes = plt.subplot(5,2,i+1)plt.scatter(train_X,train_Y)
# 画出每一个特征训练模型得到的拟合直线 y= kx + bk =  linear_model.coef_     # 回归系数b =  linear_model.intercept_   # 截距x = np.linspace(train_X.min(),train_X.max(),100)y = k * x + b
# 作图plt.plot(x,y,c='red')axes.set_title(col + ':' + str(score))
plt.show()

在这里插入图片描述

总结
从以上分析可知,单独看所有特征的训练结果,并不没有得到有效信息,我们拆分各个特征与指标的关系,可以看出:

  • bmi与糖尿病的相关性非常高,bp也有一定的关系,但是是否是直接关系,还是间接关系,有待深入考察。
  • 其他血清指标多少都和糖尿病有些关系,有的相关性强,有的相关性弱。

关注公众号:『AI学习星球
回复:糖尿病预测 即可获取数据下载。
算法学习4对1辅导论文辅导核心期刊可以通过公众号或➕v:codebiubiubiu滴滴我
在这里插入图片描述

这篇关于数据分析-23--糖尿病预测(线性回归模型)(包含数据代码)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/547431

相关文章

JAVA项目swing转javafx语法规则以及示例代码

《JAVA项目swing转javafx语法规则以及示例代码》:本文主要介绍JAVA项目swing转javafx语法规则以及示例代码的相关资料,文中详细讲解了主类继承、窗口创建、布局管理、控件替换、... 目录最常用的“一行换一行”速查表(直接全局替换)实际转换示例(JFramejs → JavaFX)迁移建

MySQL快速复制一张表的四种核心方法(包括表结构和数据)

《MySQL快速复制一张表的四种核心方法(包括表结构和数据)》本文详细介绍了四种复制MySQL表(结构+数据)的方法,并对每种方法进行了对比分析,适用于不同场景和数据量的复制需求,特别是针对超大表(1... 目录一、mysql 复制表(结构+数据)的 4 种核心方法(面试结构化回答)方法 1:CREATE

Go异常处理、泛型和文件操作实例代码

《Go异常处理、泛型和文件操作实例代码》Go语言的异常处理机制与传统的面向对象语言(如Java、C#)所使用的try-catch结构有所不同,它采用了自己独特的设计理念和方法,:本文主要介绍Go异... 目录一:异常处理常见的异常处理向上抛中断程序恢复程序二:泛型泛型函数泛型结构体泛型切片泛型 map三:文

详解C++ 存储二进制数据容器的几种方法

《详解C++存储二进制数据容器的几种方法》本文主要介绍了详解C++存储二进制数据容器,包括std::vector、std::array、std::string、std::bitset和std::ve... 目录1.std::vector<uint8_t>(最常用)特点:适用场景:示例:2.std::arra

MyBatis中的两种参数传递类型详解(示例代码)

《MyBatis中的两种参数传递类型详解(示例代码)》文章介绍了MyBatis中传递多个参数的两种方式,使用Map和使用@Param注解或封装POJO,Map方式适用于动态、不固定的参数,但可读性和安... 目录✅ android方式一:使用Map<String, Object>✅ 方式二:使用@Param

SpringBoot实现图形验证码的示例代码

《SpringBoot实现图形验证码的示例代码》验证码的实现方式有很多,可以由前端实现,也可以由后端进行实现,也有很多的插件和工具包可以使用,在这里,我们使用Hutool提供的小工具实现,本文介绍Sp... 目录项目创建前端代码实现约定前后端交互接口需求分析接口定义Hutool工具实现服务器端代码引入依赖获

利用Python在万圣节实现比心弹窗告白代码

《利用Python在万圣节实现比心弹窗告白代码》:本文主要介绍关于利用Python在万圣节实现比心弹窗告白代码的相关资料,每个弹窗会显示一条温馨提示,程序通过参数方程绘制爱心形状,并使用多线程技术... 目录前言效果预览要点1. 爱心曲线方程2. 显示温馨弹窗函数(详细拆解)2.1 函数定义和延迟机制2.2

SpringBoot整合Apache Spark实现一个简单的数据分析功能

《SpringBoot整合ApacheSpark实现一个简单的数据分析功能》ApacheSpark是一个开源的大数据处理框架,它提供了丰富的功能和API,用于分布式数据处理、数据分析和机器学习等任务... 目录第一步、添加android依赖第二步、编写配置类第三步、编写控制类启动项目并测试总结ApacheS

MySQL中的DELETE删除数据及注意事项

《MySQL中的DELETE删除数据及注意事项》MySQL的DELETE语句是数据库操作中不可或缺的一部分,通过合理使用索引、批量删除、避免全表删除、使用TRUNCATE、使用ORDERBY和LIMI... 目录1. 基本语法单表删除2. 高级用法使用子查询删除删除多表3. 性能优化策略使用索引批量删除避免

MySQL 数据库进阶之SQL 数据操作与子查询操作大全

《MySQL数据库进阶之SQL数据操作与子查询操作大全》本文详细介绍了SQL中的子查询、数据添加(INSERT)、数据修改(UPDATE)和数据删除(DELETE、TRUNCATE、DROP)操作... 目录一、子查询:嵌套在查询中的查询1.1 子查询的基本语法1.2 子查询的实战示例二、数据添加:INSE