K-Means算法实现鸢尾花数据集聚类

2023-12-11 21:30

本文主要是介绍K-Means算法实现鸢尾花数据集聚类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 1. 作者介绍
  • 2. K-Means聚类算法
    • 2.1 基本概念
    • 2.2 算法流程
  • 3. K-Means聚类算法实现
    • 3.1 鸢尾花数据集
    • 3.2 准备工作
    • 3.3 代码实现
    • 3.4 结果展示
  • 4. 问题与解析
  • 参考链接

1. 作者介绍

张勇,男,西安工程大学电子信息学院,2022级研究生
研究方向:智能信息处理与信息系统研究
电子邮件:17605542959@163.com

陈梦丹,女,西安工程大学电子信息学院,2022级硕士研究生,张宏伟人工智能课题组
研究方向:机器视觉与人工智能
电子邮件:1169738496@qq.com

2. K-Means聚类算法

2.1 基本概念

K-Means聚类算法即K均值算法,是一种迭代求解的聚类分析算法,是一个将数据集中在某些方面相似的数据成员进行分类组织的过程。给定一个数据点集合和需要的聚类数目K,K由用户指定,K均值算法根据某个距离函数反复把数据分入K个聚类中。

K均值算法优势在于它速度很快,原理简单、易于操作,但是也有缺点:(1)必须选择有多少个组或类;(2)不同的算法运行中可能产生不同的聚类结果,结果不可重复,缺乏一致性;(3)常常终止于局部最优;(4)对噪声和异常数据敏感及不适合用于发现非凸形状的聚类簇。

2.2 算法流程

K-Means的核心目标是将给定的数据集划分成K个簇(K是超参),并给出每个样本数据对应的中心点。具体步骤非常简单,可以分为4步:

  1. 数据预处理。主要是标准化、异常点过滤。
  2. 随机选取K个中心,记为 :
    在这里插入图片描述
  3. 定义损失函数:
    在这里插入图片描述
  4. 令t=0,1,2,… 为迭代步数,重复如下过程知道J 收敛:
    (1)对于每一个样本,将其分配到距离最近的中心
    在这里插入图片描述
    (2)对于每一个类中心k,重新计算该类的中心
    在这里插入图片描述

3. K-Means聚类算法实现

3.1 鸢尾花数据集

Iris鸢尾花数据集: 包含 3 类分别为山鸢尾(Iris-setosa)、变色鸢尾(Iris-versicolor)和维吉尼亚鸢尾(Iris-virginica),共 150 条数据,每类各 50 个数据,每条记录都有 4 项特征:花萼长度、花萼宽度、花瓣长度、花瓣宽度,通常可以通过这4个特征预测鸢尾花卉属于哪一品种。
在这里插入图片描述
Iris数据集是一个.csv文件,其数据格式如下:
在这里插入图片描述
图中第一行数据的意义是:150(数据集中数据的总条数);4(特征值的类别数),即花萼长度、花萼宽度、花瓣长度、花瓣宽度;setosa、versicolor、virginica:三种鸢尾花名。

从第二行开始各列数据的意义:第一列为花萼长度值;第二列为花萼宽度值;第三列为花瓣长度值;第四列为花瓣宽度值;第五列对应是种类(三类鸢尾花分别用0,1,2表示)。

3.2 准备工作

1、首先要在自己的Python环境中下载sklearn(进入个人虚拟环境并输入):

pip install scikit-learn -i https://pypi.tuna.tsinghua.edu.cn/simple

2、下载数据集:

from sklearn.cluster import KMeans         
from sklearn import datasets
from sklearn.datasets import load_iris    
iris = load_iris() 

3.3 代码实现

当K分别等于2、3、4时,具体实现代码如下:
K=2:

import matplotlib.pyplot as plt
import numpy as np
from sklearn.cluster import KMeans         
from sklearn import datasets
from sklearn.datasets import load_iris    
iris = load_iris()
X = iris.data[:]     
estimator = KMeans(n_clusters=2)       #构造聚类器,这里聚成两类
estimator.fit(X)                       #聚类
label_pred = estimator.labels_         #获取聚类标签
#绘图
x0 = X[label_pred == 0]
x1 = X[label_pred == 1]
plt.scatter(x0[:, 0], x0[:, 1], c = "red", marker='o', label='label0')
plt.scatter(x1[:, 0], x1[:, 1], c = "green", marker='*', label='label1')
plt.xlabel('petal length')
plt.ylabel('petal width')
plt.legend(loc=2)
plt.show()

K=3:

import matplotlib.pyplot as plt
import numpy as np
from sklearn.cluster import KMeans         
from sklearn import datasets
from sklearn.datasets import load_iris    
iris = load_iris()
X = iris.data[:]     
estimator = KMeans(n_clusters=3)       #构造聚类器,这里聚成两类
estimator.fit(X)                       #聚类
label_pred = estimator.labels_         #获取聚类标签
#绘图
x0 = X[label_pred == 0]
x1 = X[label_pred == 1]
x2 = X[label_pred == 2]
plt.scatter(x0[:, 0], x0[:, 1], c = "red", marker='o', label='label0')
plt.scatter(x1[:, 0], x1[:, 1], c = "green", marker='*', label='label1')
plt.scatter(x2[:, 0], x2[:, 1], c = "blue", marker='+', label='label2')
plt.xlabel('petal length')
plt.ylabel('petal width')
plt.legend(loc=2)
plt.show()

K=4:

import matplotlib.pyplot as plt
import numpy as np
from sklearn.cluster import KMeans         
from sklearn import datasets
from sklearn.datasets import load_iris    
iris = load_iris()
X = iris.data[:]     
estimator = KMeans(n_clusters=4)       #构造聚类器,这里聚成两类
estimator.fit(X)                       #聚类
label_pred = estimator.labels_         #获取聚类标签
#绘图
x0 = X[label_pred == 0]
x1 = X[label_pred == 1]
x2 = X[label_pred == 2]
x3 = X[label_pred == 3]
plt.scatter(x0[:, 0], x0[:, 1], c = "red", marker='o', label='label0')
plt.scatter(x1[:, 0], x1[:, 1], c = "green", marker='*', label='label1')
plt.scatter(x2[:, 0], x2[:, 1], c = "blue", marker='+', label='label2')
plt.scatter(x3[:, 0], x3[:, 1], c = "orange", marker='+', label='label3')
plt.xlabel('petal length')
plt.ylabel('petal width')
plt.legend(loc=2)
plt.show()

3.4 结果展示

在这里插入图片描述
在这里插入图片描述在这里插入图片描述

4. 问题与解析

在构建聚类器时,修改K值,即修改需要分成几类(簇),单单修改参数cluster=2、3、4是不正确的,在绘图程序部分也要与之对应进行修改

例如:cluster=4,绘图程序仍然用cluster=3的绘图程序,虽然程序不会报错,但是导致分类只有三类,实验结果错误。下面是错误代码及结果演示:

import matplotlib.pyplot as plt
import numpy as np
from sklearn.cluster import KMeans         
from sklearn import datasets
from sklearn.datasets import load_iris    
iris = load_iris()
X = iris.data[:]     
estimator = KMeans(n_clusters=4)       #构造聚类器,这里聚成两类
estimator.fit(X)                       #聚类
label_pred = estimator.labels_         #获取聚类标签
#绘图
x0 = X[label_pred == 0]
x1 = X[label_pred == 1]
x2 = X[label_pred == 2]
plt.scatter(x0[:, 0], x0[:, 1], c = "red", marker='o', label='label0')
plt.scatter(x1[:, 0], x1[:, 1], c = "green", marker='*', label='label1')
plt.scatter(x2[:, 0], x2[:, 1], c = "blue", marker='+', label='label2')
plt.xlabel('petal length')
plt.ylabel('petal width')
plt.legend(loc=2)
plt.show()

错误代码实验结果展示:
在这里插入图片描述

参考链接

https://zhuanlan.zhihu.com/p/184686598?utm_source=qq
https://blog.csdn.net/u010916338/article/details/86487890

这篇关于K-Means算法实现鸢尾花数据集聚类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/482163

相关文章

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

PyCharm中配置PyQt的实现步骤

《PyCharm中配置PyQt的实现步骤》PyCharm是JetBrains推出的一款强大的PythonIDE,结合PyQt可以进行pythion高效开发桌面GUI应用程序,本文就来介绍一下PyCha... 目录1. 安装China编程PyQt1.PyQt 核心组件2. 基础 PyQt 应用程序结构3. 使用 Q

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库