基于OpenCV+CNN+IOT+微信小程序智能果实采摘指导系统——深度学习算法应用(含pytho、JS工程源码)+数据集+模型(五)

本文主要是介绍基于OpenCV+CNN+IOT+微信小程序智能果实采摘指导系统——深度学习算法应用(含pytho、JS工程源码)+数据集+模型(五),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 前言
  • 总体设计
    • 系统整体结构图
    • 系统流程图
  • 运行环境
    • Python环境
    • TensorFlow 环境
    • Jupyter Notebook环境
    • Pycharm 环境
    • 微信开发者工具
    • OneNET云平台
  • 模块实现
    • 1. 数据预处理
    • 2. 创建模型并编译
    • 3. 模型训练及保存
    • 4. 上传结果
    • 5. 小程序开发
      • 1)查询图片
      • 2)查询识别结果
  • 系统测试
    • 1. 训练准确率
    • 2. 测试效果
    • 3. 外部访问效果
  • 相关其它博客
  • 工程源代码下载
  • 其它资料下载


在这里插入图片描述

前言

本项目基于Keras框架,引入CNN进行模型训练,采用Dropout梯度下降算法,按比例丢弃部分神经元,同时利用IOT及微信小程序实现自动化远程监测果实成熟度以及移动端实时监测的功能,为果农提供采摘指导,有利于节约劳动力,提高生产效率,提升经济效益。

本项目基于Keras框架,采用卷积神经网络(CNN)进行模型训练。通过引入Dropout梯度下降算法,实现了对神经元的按比例丢弃,以提高模型的鲁棒性和泛化性能。同时,利用物联网(IoT)技术和微信小程序,项目实现了自动化远程监测果实成熟度,并在移动端实时监测果园状态的功能。这为果农提供了采摘的实时指导,有助于节约劳动力、提高生产效率,从而提升果园经济效益。

首先,项目采用Keras框架构建了一个卷积神经网络,利用深度学习技术对果实成熟度进行准确的识别和预测。

其次,引入Dropout梯度下降算法,通过随机丢弃神经元的方式,防止模型过拟合,提高了对新数据的泛化能力。

接着,项目整合了物联网技术,通过传感器等设备对果园中的果实进行远程监测。这样,果农可以在不同地点远程了解果实的成熟度状况。

同时,通过微信小程序,果农可以实时监测果园状态,了解果实成熟度、采摘时机等信息,从而更加科学地安排采摘工作。

总体来说,该项目不仅在模型训练上引入了先进的深度学习技术,还通过物联网和微信小程序实现了智能化的果园管理系统,为果农提供了更加便捷、高效的农业生产解决方案。

总体设计

本部分包括系统整体结构图和系统流程图。

系统整体结构图

系统整体结构如图所示。

在这里插入图片描述

系统流程图

模型训练流程如图所示。
在这里插入图片描述

数据上传流程如图所示。

在这里插入图片描述

小程序流程如图所示。
在这里插入图片描述

运行环境

本部分包括Python环境、TensorFlow环境、JupyterNotebook环境、PyCharm环境、微信开发者工具和OneNET云平台。

Python环境

详见博客。

TensorFlow 环境

详见博客。

Jupyter Notebook环境

详见博客。

Pycharm 环境

详见博客。

微信开发者工具

详见博客。

OneNET云平台

详见博客。

模块实现

本项目包括本项目包括5个模块:数据预处理、创建模型与编译、模型训练及保存、上传结果、小程序开发。下面分别给出各模块的功能介绍及相关代码。

1. 数据预处理

以红枣为实验对象,在互联网上爬取1000张图片作为数据集。

详见博客。

2. 创建模型并编译

数据加载进模型之后,需要定义模型结构并优化损失函数。

详见博客。

3. 模型训练及保存

定义模型架构和编译之后,通过训练集训练,使模型可以识别红枣的成熟程度。这里将使用训练集和测试集来拟合并保存模型。

详见博客。

4. 上传结果

上传结果有两种方法:一是调用计算机摄像头拍摄图片,将图片信息转换为二进制数据流后上传至OneNET云平台;二是将数字图片输入Keras模型中,获取输出后将识别结果上传至OneNET云平台。

详见博客。

5. 小程序开发

微信小程序用于查看果实图片、获取采摘建议和查询识别结果。

1)查询图片

查询图片功能采用两重嵌套回调:第一层通过访问图片数据流获取图片的索引目录,传递给第二层;第二层使用图片索引目录访问图片数据流信息,得到图片的二进制数据流。为使图片能够在界面中显示,将二进制数据转换为Base64格式,用that.setData()函数将值传递给wxm文件,并在该函数中修改按钮上的keyword为"单击查看采收建议",实现按钮功能的切换。

//回调图片
send: function () {var that = thisif (that.data.keyword=='单击查看你的果园'){//多重回调,两次const requestPicIndex = wx.request({url: 'https://api.heclouds.com/devices/586488389/datapoints?datastream_id=pic',header: {'content-type': 'application/json','api-key': '93IlIl2tfXddMN8sgQIInc7qbXs='},success: function (res) {var picIndex=res.data.data.datastreams[0].datapoints[0].value.indexconsole.log(res.data.data.datastreams[0].datapoints[0].value.index)
//打印图片索引目录;OneNet上图片的索引//嵌套的第二次回调const requestTask = wx.request({url: 'http://api.heclouds.com/bindata/' + picIndex,//图片urlheader: {'content-type': 'application/json','api-key': 'RSKlDBtVrZ7qDWvK=b6IAyFi=Ow='
//master-apikey,可操控OneNET上所有东西},responseType: 'arraybuffer',//相应类型success: function (res) {console.log(res.data)      //打印返回中的data,res代表返回数据var data = res.datavar base64 = wx.arrayBufferToBase64(res.data)
//二进制数据流转化成base64base64 = base64.replace(/[\r\n]/g, "") //删去换行符that.setData({imgUrl: 'data:image/PNG;base64,' + base64,
//能够显示图片base64的形式,传值给wxmlkeyword: '单击查看采收建议'//修改button功能为返回采收建议})console.log('http://api.heclouds.com/bindata/'+picIndex)//打印url},fail: function (res) {  //异常处理console.log("fail!!!")},complete: function (res) {console.log("end")}})},//回调失败则打印fail!!!fail: function (res) {console.log("fail!!!")},//回调完成打印图片urlcomplete: function (res) {console.log("end")}})}}

2)查询识别结果

得到识别结果后进行一次数值判断:"0"代表未成熟,不适合采收;"1"代表半熟,为最佳采收时机;"2"代表完全成熟,需要尽快采收。通过that.setDataM()函数赋值给reM,显示采收建议。

//回调识别结果
else if (that.data.keyword=='单击查看采收建议'){const requestTask = wx.request({url: 'https://api.heclouds.com/devices/586488389/datapoints?datastream_id=rslt',  //识别结果的urlheader: {'content-type': 'application/json','api-key': '93IlIl2tfXddMN8sgQIInc7qbXs='},success: function (res) {var app = getApp()app.globalData.Zao = res.data.data.datastreams[0]var a = app.globalData.Zao.datapoints[0].valueconsole.log(app.globalData.Zao)//0代表未成熟,不适合采收;1代表半熟,最佳采收时机;2代表完全成熟,尽快采收if (a == 2) {console.log(a)that.setData({reM: '完全成熟,请尽快采收!'})console.log('reM:' + that.data.reM)}else if (a == 1) {console.log(a)that.setData({reM: '半熟,现在是最佳的采收时机'})console.log('reM:' + that.data.reM)}else if (a == 0) {console.log(a)that.setData({reM: '不成熟,还不能采收哦~'})console.log('reM:' + that.data.reM)}},//回调失败则打印fail!!!fail: function (res) {console.log("fail!!!")},//回调完成打印结果complete: function (res) {console.log("end")}})}

系统测试

本部分包括训练准确率、测试效果和外部访问效果。

1. 训练准确率

测试准确率达到88%左右,意味着这个预测模型训练比较成功。随着训练轮次的增多,模型在训练数据、测试数据上的损失和准确率逐渐收敛,最终趋于稳定,如图所示。

在这里插入图片描述

2. 测试效果

将测试集数据代入模型进行测试,并对分类标签与原始数据进行显示和对比,验证了该模型能够实现红枣三类成熟程度的识别。测试结果如图所示。

在这里插入图片描述

3. 外部访问效果

打开小程序,初始界面如图所示。

在这里插入图片描述

单击界面最上方的"登录"按钮可获得用户微信头像和昵称,如图所示。

在这里插入图片描述

单击界面中"单击查看你的果园"按钮,在按钮上方会出现果实图片,同时按钮上的文字变成"单击查看采收建议",如图所示。

在这里插入图片描述

单击"单击查看采收建议"按钮,在按钮下方出现果实成熟度信息和具体采收建议,如图所示。

在这里插入图片描述

移动端测试结果如图所示。

在这里插入图片描述

相关其它博客

基于OpenCV+CNN+IOT+微信小程序智能果实采摘指导系统——深度学习算法应用(含pytho、JS工程源码)+数据集+模型(一)

基于OpenCV+CNN+IOT+微信小程序智能果实采摘指导系统——深度学习算法应用(含pytho、JS工程源码)+数据集+模型(二)

基于OpenCV+CNN+IOT+微信小程序智能果实采摘指导系统——深度学习算法应用(含pytho、JS工程源码)+数据集+模型(三)

基于OpenCV+CNN+IOT+微信小程序智能果实采摘指导系统——深度学习算法应用(含pytho、JS工程源码)+数据集+模型(四)

工程源代码下载

详见本人博客资源下载页


其它资料下载

如果大家想继续了解人工智能相关学习路线和知识体系,欢迎大家翻阅我的另外一篇博客《重磅 | 完备的人工智能AI 学习——基础知识学习路线,所有资料免关注免套路直接网盘下载》
这篇博客参考了Github知名开源平台,AI技术平台以及相关领域专家:Datawhale,ApacheCN,AI有道和黄海广博士等约有近100G相关资料,希望能帮助到所有小伙伴们。

这篇关于基于OpenCV+CNN+IOT+微信小程序智能果实采摘指导系统——深度学习算法应用(含pytho、JS工程源码)+数据集+模型(五)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/470277

相关文章

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

Python基于微信OCR引擎实现高效图片文字识别

《Python基于微信OCR引擎实现高效图片文字识别》这篇文章主要为大家详细介绍了一款基于微信OCR引擎的图片文字识别桌面应用开发全过程,可以实现从图片拖拽识别到文字提取,感兴趣的小伙伴可以跟随小编一... 目录一、项目概述1.1 开发背景1.2 技术选型1.3 核心优势二、功能详解2.1 核心功能模块2.

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

基于Python实现一个简单的题库与在线考试系统

《基于Python实现一个简单的题库与在线考试系统》在当今信息化教育时代,在线学习与考试系统已成为教育技术领域的重要组成部分,本文就来介绍一下如何使用Python和PyQt5框架开发一个名为白泽题库系... 目录概述功能特点界面展示系统架构设计类结构图Excel题库填写格式模板题库题目填写格式表核心数据结构

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Linux系统中的firewall-offline-cmd详解(收藏版)

《Linux系统中的firewall-offline-cmd详解(收藏版)》firewall-offline-cmd是firewalld的一个命令行工具,专门设计用于在没有运行firewalld服务的... 目录主要用途基本语法选项1. 状态管理2. 区域管理3. 服务管理4. 端口管理5. ICMP 阻断

python编写朋克风格的天气查询程序

《python编写朋克风格的天气查询程序》这篇文章主要为大家详细介绍了一个基于Python的桌面应用程序,使用了tkinter库来创建图形用户界面并通过requests库调用Open-MeteoAPI... 目录工具介绍工具使用说明python脚本内容如何运行脚本工具介绍这个天气查询工具是一个基于 Pyt

Ubuntu设置程序开机自启动的操作步骤

《Ubuntu设置程序开机自启动的操作步骤》在部署程序到边缘端时,我们总希望可以通电即启动我们写好的程序,本篇博客用以记录如何在ubuntu开机执行某条命令或者某个可执行程序,需要的朋友可以参考下... 目录1、概述2、图形界面设置3、设置为Systemd服务1、概述测试环境:Ubuntu22.04 带图