深入理解数据在内存中是如何存储的,位移操作符如何使用(能看懂文字就能明白系列)文章超长,慢慢品尝

本文主要是介绍深入理解数据在内存中是如何存储的,位移操作符如何使用(能看懂文字就能明白系列)文章超长,慢慢品尝,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

系列文章目录

C语言笔记专栏
能看懂文字就能明白系列
🌟 个人主页:古德猫宁-

🌈 信念如阳光,照亮前行的每一步


文章目录

  • 系列文章目录
    • 🌈 *信念如阳光,照亮前行的每一步*
  • 前言
  • 引子
  • 一、2进制和进制转化
    • 为什么要使用2进制的形式表示信息
    • 各种进制如何转换
      • 权重和二进制如何转换为十进制
      • 十进制如何转为二进制
      • 二进制如何转八进制
      • 2进制如何转16进制
  • 原码、补码、反码
  • 三、移位运算
    • 左移操作符
    • 右移操作符
    • 位操作符
      • 1、按位与 &
      • 2、按位或 |
      • 3、按位异或 ^
      • 4、按位取反 ~
  • 总结


前言

本节目标:理解数据在计算机中以什么样的方式表现,又用什么方式存储的,各种进制之间如何转换,数据在内存中的表现形式,左移操作符和右移操作符如何移,四个位操作符的计算规则


引子

在日常生活中,我们通常用十进制来表示一个数字,使用起来比较方便,但对于计算机而言,存储和处理信息的时候,通常以二进制的形式来表示(这些一连串的二进制数字称为位(bit))。因为二进制的形式能够很容易地被表示,存储和传输。

在程序中,即使是用十进制数和文字等记述信息,在编译后也会转换成二进制的值
如图:
在这里插入图片描述
对于用二进制数表示的信息,计算机不会区分它是数值,文字,还是某种图片的模式等,而是根据编写程序的各位对计算机发出的指示来进行信息的处理(运算)。

那么接下来让我们深入理解数据在计算机中是如何存储的吧

一、2进制和进制转化

为什么要使用2进制的形式表示信息

其实所谓的2进制,8进制,16进制以及我们日常使用的十进制都是一个数值的不同表示形式而已。至于计算机的信息数据为什么只能用二进制的计数方式这种形式,其实是取决于IC这种电子部件(这里不讲述IC是什么,有兴趣的伙伴自己搜一下)

二进制数的位数一般是8位,16位,32位,都是8的倍数,为什么呢?这是因为计算机处理的信息的基本单位是字节(也就是8个比特位),字节是最基本的信息计量单位。而所说的位是最小单位(注意区分)内存和磁盘都使用字节单位来存储和读写数据,使用位单位则无法读写数据。

各种进制如何转换

比如:数字15的各种进制的表示形式:

15的二进制:1111
15的八进制:17
15的十进制:15
15的十六进制:F(大小写都可以)

首先我们从10进制讲起吧,10进制比较常用,小孩子都知道的一个知识:

  • 10进制的数字每一位都是0到9的数字组成
  • 10进制中满十进一

那换成二进制也是同一个道理:

  • 二进制的数字由1和0组成
  • 二进制中满二进一

比如上面15的二进制1111就是二进制数字

权重和二进制如何转换为十进制

那你有没有想过十进制的123为什么就是123呢?
其实10进制的每一位是权重的(权重也称位权),10进制的数字从右向左是个位,十位,百位……,每一位分别的权重是10的零次方,10的一次方,10的二次方……,以此类推。
如图所示:
在这里插入图片描述
这种方式也同样适合二进制数,即第一位(上图的个位)是2的零次方,第二位(上图的十位)是2的一次方,第三位是2的二次方……
在这里插入图片描述
各位初学的伙伴用上面的方式将开头的所说1111拿来练练吧,看看是如何将1111转换为15的

十进制如何转为二进制

那十进制又如何转换成二进制的呢???

方法很简单,将一个10进制的数整除2之后得到的余数先保留下来,接着往下除,直到10进制的数不能再被2整除即可,如图所示:
在这里插入图片描述

二进制如何转八进制

8进制的数字由0到7组成,0~7的数字,各自写成2进制,最多有3个2进制位就足够了,比如7的2进制是111,所以在2进制转8进制的时候,从2进制序列中从右边低位开始向左每3个2进制位会换算成一个8进制位,剩余不够3个2进制位的直接换算。

如:2进制的01 101 011,换成8进制就是:0153(0开头的数字会被当做8进制
在这里插入图片描述

2进制如何转16进制

16进制的数字每一位由0~9,a到f组成,各自写成2进制,最多有4个2进制位就足够了

比如f的二进制是1111,所以在2进制转16进制的时候,从2进制序列中右边低位开始向左每4个2进制位换算成一个16进制位,剩余不够4个2进制的直接换算。
比如:2进制的0110 1011,换成16进制为:0x6b(0110为6,1011为b)注意:16进制表示的时候前面加0x

如图所示:
在这里插入图片描述

原码、补码、反码

整数的2进制表示方法有三种,即原码,补码,反码

有符号整数的三种表示方法均有符号位和数值位两部分,2进制序列中,最高位的1位为符号位,其他都是数值位。

符号位都是用0表示一个数为正数,用1表示一个数为负数

特别的是:正整数的原码,反码,补码都相同
负整数的三种表示方法各不相同

  • 原码:直接将数值按照正负数的形式翻译成二进制得到的就是原码
  • 反码:原码的符号位不变,将其他位依次按位取反得到的就是反码
  • 补码:反码+1得到的就是补码
    反码得到原码也是可以使用:取反,+1的操作

对于整型来说:数据存放内存中其实存放的是补码
在计算机中,数值一律用补码来表示和存储。

原因:使用补码,可以将符号位和数值域统一处理,同时,加法和减法也可以统一处理(CPU只有加法器,计算机在做减法运算时,实际上内部是在做加法运算,是不是感觉很神奇),此外,补码和原码相互转换,其运算过程是相同的,不需要额外的硬件电路。

三、移位运算

了解完二进制数的机制后,接下来我们来看一下运算,和10进制数一样,四则运算同样也可以使用在二进制中,主要注意逢二进一就行。

首先来解释一下什么是移位运算。移位运算指的是将二进制数值的各数位进行左右移位的运算。

如何进行移位运算呢,这里就要来介绍两个移位操作符了

  • <<左移操作符
  • >>右移操作符

注意:移位操作符的操作数只能是整数

左移操作符

移动的规则:左边抛弃,右边补零
例如以下代码:

#include <stdio.h>
int main()
{int num = 10;int n = num << 1;//这里的1表示向左移动一个比特位,后面有图printf("n= %d\n", n);printf("num= %d\n", num);return 0;
}

运行结果显示:
在这里插入图片描述
在这里插入图片描述

右移操作符

移动规则:首先右移运算分两种:

  1. 逻辑右移:左边用0填充,右边丢弃
  2. 算术右移:左边用原该值的符号位填充,右边丢弃
#include <stdio.h>
int main()
{
int num = 10;
int n = num>>1;
printf("n= %d\n", n);
printf("num= %d\n", num);
return 0;
}

运行结果显示:
在这里插入图片描述
这是逻辑右移:(这里的补码是什么后面的章节会一一介绍)
在这里插入图片描述
这是算术右移:
在这里插入图片描述
警告:对于移位运算符,不要移动负数位,这个是标准未定义的
如:

int num = 10;
num>>-1;//这是错误的

右移到底是算术右移还是逻辑右移取决于编译器的实现
大部分的编译器上是算术右移

小结:
逻辑右移:

  • 对应无符号整数,逻辑右移和算术右移效果是一样的。
  • 对于带符号整数,逻辑右移会在左侧填充零。这意味着无论正负,都在左侧填充零位。
  • 逻辑右移通常用于无符号整数或者希望右移时左侧补零的情况

算术右移:

  • 对于带符号整数,算术右移会在左侧填充符号位的值。如果原数是正数,就在左侧填充零,如果原数是负数,就在左侧填充一位1。
  • 算术右移用于带符号整数,以保持负数的符号位。

位操作符

1、按位与 &

计算规则:对应的二进制进行与运算,只要有0就是0,两个同时为1才是1
例如:

int main()
{int a = 3;int b = -5;int ret = a & b;printf("%d", ret);return 0;
}

解释:

3的补码:00000000000000000000000000000011
-5的原码:1000000000000000000000000000101
-5的反码:11111111111111111111111111111111010
-5的补码:11111111111111111111111111111111011

在这里插入图片描述

运行结果:
在这里插入图片描述

2、按位或 |

计算规则:对应的二进制位进行或运算,只要有1就是1,两个同时为0才是0

int main()
{int a = 3;int b = -5;int ret = a | b;printf("%d", ret);return 0;
}

3的补码: 00000000000000000000000000000011
-5的原码:10000000000000000000000000000101
-5的反码:11111111111111111111111111111010
-5的补码:11111111111111111111111111111011

在这里插入图片描述
运行结果:
在这里插入图片描述

3、按位异或 ^

计算规则:对应的二进制位进行异或运算,相同为0,相异为1

int main()
{int a = 3;int b = -5;int ret = a ^ b;printf("%d", ret);return 0;
}

运行结果:
在这里插入图片描述
这里不一一解释了,各位可以动手运算一下

4、按位取反 ~

计算规则:将自身的二进制位进行取反操作,即0转1,1转0

1的补码:00000000000000000000000000000001
取反操作后:11111111111111111111111111111110(补码)
反码:10000000000000000000000000000001
原码:10000000000000000000000000000010(-2)

int main()
{int a = 1;int b = ~a;printf("%d", b);return 0;
}

总结

本文内容比较多,只要掌握了使用二进制数来表示信息的方法及其运算机制,也就自然能够了解程序的运行机制了

这篇关于深入理解数据在内存中是如何存储的,位移操作符如何使用(能看懂文字就能明白系列)文章超长,慢慢品尝的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/466273

相关文章

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符