基于核主成分结合自适应麻雀算法优化支持向量机KPCA-ISSA-SVM实现分类附matlab的代码

本文主要是介绍基于核主成分结合自适应麻雀算法优化支持向量机KPCA-ISSA-SVM实现分类附matlab的代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

🔥 内容介绍

在机器学习领域中,支持向量机(Support Vector Machine,SVM)是一种常用的分类算法。它通过在特征空间中构建一个最优超平面,将不同类别的样本分开。然而,传统的SVM算法在处理高维数据时存在一些问题,例如计算复杂度高、模型泛化能力差等。

为了解决这些问题,研究人员提出了一种基于核主成分(Kernel Principal Component Analysis,KPCA)和自适应麻雀算法(Improved Social Spider Algorithm,ISSA)优化的支持向量机分类算法(KPCA-ISSA-SVM)。这种算法结合了KPCA的降维能力和ISSA的全局搜索能力,能够有效地处理高维数据,并提高模型的分类性能。

首先,KPCA是一种非线性降维方法,它通过将原始数据映射到高维特征空间中,利用核函数计算样本之间的相似性。然后,通过计算样本在特征空间中的主成分,可以得到一组新的低维特征,从而减少数据的维度。这样做的好处是可以保留更多的数据信息,提高模型的分类性能。

其次,ISSA是一种基于自然界中蜘蛛行为的优化算法。它模拟了蜘蛛在捕食过程中的搜索行为,通过不断地调整蜘蛛的位置和速度,以找到最优解。在KPCA-ISSA-SVM算法中,ISSA被用来优化支持向量机的超参数,例如惩罚系数和核函数参数。通过使用ISSA进行全局搜索,可以得到更好的模型参数,从而提高模型的泛化能力。

最后,KPCA-ISSA-SVM算法的实现步骤如下:

  1. 对原始数据进行KPCA降维,得到新的特征矩阵。

  2. 初始化ISSA算法的参数,包括蜘蛛的初始位置和速度。

  3. 使用ISSA算法对支持向量机的超参数进行优化,得到最优参数。

  4. 使用最优参数训练支持向量机模型。

  5. 对测试数据进行预测,并评估模型的分类性能。

通过实验证明,KPCA-ISSA-SVM算法在处理高维数据时具有较好的性能。与传统的SVM算法相比,它能够更好地处理非线性问题,并提高模型的分类准确率。此外,KPCA-ISSA-SVM算法还具有较好的鲁棒性和泛化能力,适用于各种复杂的分类任务。

总结起来,KPCA-ISSA-SVM算法是一种基于核主成分和自适应麻雀算法优化的支持向量机分类算法。它通过降维和全局搜索的方式,提高了SVM算法在处理高维数据时的性能。未来,我们可以进一步研究和改进这种算法,以应对更复杂的分类问题。

📣 部分代码

%___________________________________________________________________%%  Grey Wolf Optimizer (GWO) source codes version 1.0               %%                                                                   %%  Developed in MATLAB R2011b(7.13)                                 %%                                                                   %%  Author and programmer: Seyedali Mirjalili                        %%                                                                   %%         e-Mail: ali.mirjalili@gmail.com                           %%                 seyedali.mirjalili@griffithuni.edu.au             %%                                                                   %%       Homepage: http://www.alimirjalili.com                       %%                                                                   %%   Main paper: S. Mirjalili, S. M. Mirjalili, A. Lewis             %%               Grey Wolf Optimizer, Advances in Engineering        %%               Software , in press,                                %%               DOI: 10.1016/j.advengsoft.2013.12.007               %%                                                                   %%___________________________________________________________________%% This function initialize the first population of search agentsfunction Positions=initialization(SearchAgents_no,dim,ub,lb)Boundary_no= size(ub,2); % numnber of boundaries% If the boundaries of all variables are equal and user enter a signle% number for both ub and lbif Boundary_no==1    Positions=rand(SearchAgents_no,dim).*(ub-lb)+lb;end% If each variable has a different lb and ubif Boundary_no>1    for i=1:dim        ub_i=ub(i);        lb_i=lb(i);        Positions(:,i)=rand(SearchAgents_no,1).*(ub_i-lb_i)+lb_i;    endend

⛳️ 运行结果

🔗 参考文献

[1] 迟翕幻.决策树多元分类模型预测森林植被覆盖[J].电子制作, 2017(24):2.DOI:CNKI:SUN:DZZZ.0.2017-24-012.

[2] 倪网东.新型多元校正、校正转换和多元分类分析方法研究[D].中南大学,2010.DOI:10.7666/d.y1721849.

[3] 王忆之.基于支持向量机的冷水机组故障检测与诊断优化研究[J].[2023-09-18].

[4] 彭令,牛瑞卿,赵艳南,等.基于核主成分分析和粒子群优化支持向量机的滑坡位移预测[J].武汉大学学报:信息科学版, 2013(2):6.DOI:CNKI:SUN:WHCH.0.2013-02-006.

[5] 潘石柱,殳伟群,王令群.基于支持向量机和核主成分分析的车牌字符识别[J].电子科技, 2006(10):4.DOI:10.3969/j.issn.1007-7820.2006.10.016.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

这篇关于基于核主成分结合自适应麻雀算法优化支持向量机KPCA-ISSA-SVM实现分类附matlab的代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/418166

相关文章

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

PostgreSQL中MVCC 机制的实现

《PostgreSQL中MVCC机制的实现》本文主要介绍了PostgreSQL中MVCC机制的实现,通过多版本数据存储、快照隔离和事务ID管理实现高并发读写,具有一定的参考价值,感兴趣的可以了解一下... 目录一 MVCC 基本原理python1.1 MVCC 核心概念1.2 与传统锁机制对比二 Postg

SpringBoot整合Flowable实现工作流的详细流程

《SpringBoot整合Flowable实现工作流的详细流程》Flowable是一个使用Java编写的轻量级业务流程引擎,Flowable流程引擎可用于部署BPMN2.0流程定义,创建这些流程定义的... 目录1、流程引擎介绍2、创建项目3、画流程图4、开发接口4.1 Java 类梳理4.2 查看流程图4

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.