Python基于机器学习模型LightGBM进行水电站流量入库预测项目源码+数据集+模型,含项目报告

本文主要是介绍Python基于机器学习模型LightGBM进行水电站流量入库预测项目源码+数据集+模型,含项目报告,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.前言
该文档主要是介绍通过机器学习模型LightGBM进行水电站流量入库预测。 对于水电站来说,发电是主要经济效益来源,而水就是生产的原料。对进入水电站水库的入库流量进行精准预测,能够帮助水电站对防洪、发电计划调度工作进行合理安排,实现避免洪涝灾害和提升发电经济效益的目的。
在这里插入图片描述

2.目标
基于历史数据和当前观测信息,对电站未来7日入库流量进行预测(每3小时一个预测值,共56个待预测值)。
3.数据解析
竞赛主办方共提供了4类数据,包括历史入库流量数据、环境数据、降雨预报数据以及遥测站降雨观测数据。数据均为时序数据。
其中入库流量数据包含时间和流量两个字段。环境数据提供了温度、风速、方向三个字段。天气预报包含了未来五天的降雨情况。遥测站数据则包括了39个点的降雨量。
初赛提供:2013年-2018年的历史数据
决赛提供:2019年数据
数据维度:3小时为一个粒度点
数据缺失:初赛数据在14年缺少部分数据,决赛未提供18年数据
综上述,经过对数据的了解和分析,影响模型预测主要归纳为一下四个方面:
历史数据存在样本缺失
使用何种模型进行预测,NN还是回归
如何选取、构造特征,使用特征
数据的准确性
4.赛题分析与模型选择
从数据表现来看,是一个完完全全的时序题,针对时序题的做法有很多,找周期拟合、使用NN模型,本人尝试过LSTM、GRU、RNN、CNN等,通过线下拟合,自划分样本进行测试,可以观测到拟合效果非常好
(如图4-1),但是反馈则是,只是存在部分段分数很高,部分分段很低,导致结果评分为BR,模型稳定性差。
遂转换思路,将问题转换成线性拟合问题,将时序数据看成一个单独的点,构造特征将时序保留,进行回归预测,重新构造测试数据,预测的输出作为下一次预测的输入,进行预测。最终选择竞赛界比较通用的LightGBM模型进行线性拟合。得到的表现却是各段分数平平如其,虽然分数较低,但是每一段的偏差相差不大,模型表现较为稳定。相对NN鲁棒性更强,这也是为什么在决赛选择LightGBM的原因。各个特征的重要程度表现如图4-2所示。
在这里插入图片描述

图4-1 cnn-gru拟合
在这里插入图片描述

图4-2 特征重要度
5.方法
数据预处理
将初赛、复赛数据读入,相同类别数据进行concat合并。如历史入库数据。并将时间转换成datetime格式。其他三类数据类似处理。
在这里插入图片描述

特征工程、训练集、测试集构造
1.遥测站数据处理和特征工程
(1)39个遥测站数据直接求和,而且发现遥测站的数据更像是一个类别数据,和QI也存在一定的相关性。
(2)将原始的天数据转换成入库流量一直的时序数据3H粒度数据,方便关联
2.天气预报数据
(1)这里使用的前期预报不是未来五天,而是前三天的一个天气预报作为特征输入。
在这里插入图片描述

3.环境数据
(1)环境数据使用当天数据,考虑到风向数据分布不一致的问题,将其剔除,只是用温度和风速作为特征输入。
4.入流流量数据
(1)历史8个点的时刻数据作为特征输入Q1-Q8
5.保留时序特征
(1)构造年、月、小时、小时IDX特征(保留时序,作为也可以理解为相近数据的权重)
在这里插入图片描述

6.数据构造
按照待预测的时间段进行测试集构造。
在这里插入图片描述

模型构建
这里使用的是五折的交叉验证,对最终结果也是5折之后的平均结果。
在这里插入图片描述

结果预测
对5段结果进行分别预测。每一次的输出作为下一次的输入,进行构造Q1-Q8的特征更新。五段预测方式一致。
在这里插入图片描述
结果提交
将5段结果数据进行拼接,保存至csv进行提交。
在这里插入图片描述

6.总结
从模型表现来看,最终结果五段结果均为负数,但是整体偏差不大,鲁棒性比较强,最终五段的平均在-75左右,其他朋友的模型肯定都比这个模型更加精致,从表现来看,他们在其他几段预测的结果表现都很不错,比这个模型更强,但是在第四段出现了意外,但这也是数据中不可计算的意外。他们的方案更加值得学习,共同进步,共同学习。

完整代码下载地址:水电站入库流量预测

这篇关于Python基于机器学习模型LightGBM进行水电站流量入库预测项目源码+数据集+模型,含项目报告的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/417825

相关文章

使用python生成固定格式序号的方法详解

《使用python生成固定格式序号的方法详解》这篇文章主要为大家详细介绍了如何使用python生成固定格式序号,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... 目录生成结果验证完整生成代码扩展说明1. 保存到文本文件2. 转换为jsON格式3. 处理特殊序号格式(如带圈数字)4

vite搭建vue3项目的搭建步骤

《vite搭建vue3项目的搭建步骤》本文主要介绍了vite搭建vue3项目的搭建步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1.确保Nodejs环境2.使用vite-cli工具3.进入项目安装依赖1.确保Nodejs环境

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

idea+spring boot创建项目的搭建全过程

《idea+springboot创建项目的搭建全过程》SpringBoot是Spring社区发布的一个开源项目,旨在帮助开发者快速并且更简单的构建项目,:本文主要介绍idea+springb... 目录一.idea四种搭建方式1.Javaidea命名规范2JavaWebTomcat的安装一.明确tomcat