Python基于机器学习模型LightGBM进行水电站流量入库预测项目源码+数据集+模型,含项目报告

本文主要是介绍Python基于机器学习模型LightGBM进行水电站流量入库预测项目源码+数据集+模型,含项目报告,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.前言
该文档主要是介绍通过机器学习模型LightGBM进行水电站流量入库预测。 对于水电站来说,发电是主要经济效益来源,而水就是生产的原料。对进入水电站水库的入库流量进行精准预测,能够帮助水电站对防洪、发电计划调度工作进行合理安排,实现避免洪涝灾害和提升发电经济效益的目的。
在这里插入图片描述

2.目标
基于历史数据和当前观测信息,对电站未来7日入库流量进行预测(每3小时一个预测值,共56个待预测值)。
3.数据解析
竞赛主办方共提供了4类数据,包括历史入库流量数据、环境数据、降雨预报数据以及遥测站降雨观测数据。数据均为时序数据。
其中入库流量数据包含时间和流量两个字段。环境数据提供了温度、风速、方向三个字段。天气预报包含了未来五天的降雨情况。遥测站数据则包括了39个点的降雨量。
初赛提供:2013年-2018年的历史数据
决赛提供:2019年数据
数据维度:3小时为一个粒度点
数据缺失:初赛数据在14年缺少部分数据,决赛未提供18年数据
综上述,经过对数据的了解和分析,影响模型预测主要归纳为一下四个方面:
历史数据存在样本缺失
使用何种模型进行预测,NN还是回归
如何选取、构造特征,使用特征
数据的准确性
4.赛题分析与模型选择
从数据表现来看,是一个完完全全的时序题,针对时序题的做法有很多,找周期拟合、使用NN模型,本人尝试过LSTM、GRU、RNN、CNN等,通过线下拟合,自划分样本进行测试,可以观测到拟合效果非常好
(如图4-1),但是反馈则是,只是存在部分段分数很高,部分分段很低,导致结果评分为BR,模型稳定性差。
遂转换思路,将问题转换成线性拟合问题,将时序数据看成一个单独的点,构造特征将时序保留,进行回归预测,重新构造测试数据,预测的输出作为下一次预测的输入,进行预测。最终选择竞赛界比较通用的LightGBM模型进行线性拟合。得到的表现却是各段分数平平如其,虽然分数较低,但是每一段的偏差相差不大,模型表现较为稳定。相对NN鲁棒性更强,这也是为什么在决赛选择LightGBM的原因。各个特征的重要程度表现如图4-2所示。
在这里插入图片描述

图4-1 cnn-gru拟合
在这里插入图片描述

图4-2 特征重要度
5.方法
数据预处理
将初赛、复赛数据读入,相同类别数据进行concat合并。如历史入库数据。并将时间转换成datetime格式。其他三类数据类似处理。
在这里插入图片描述

特征工程、训练集、测试集构造
1.遥测站数据处理和特征工程
(1)39个遥测站数据直接求和,而且发现遥测站的数据更像是一个类别数据,和QI也存在一定的相关性。
(2)将原始的天数据转换成入库流量一直的时序数据3H粒度数据,方便关联
2.天气预报数据
(1)这里使用的前期预报不是未来五天,而是前三天的一个天气预报作为特征输入。
在这里插入图片描述

3.环境数据
(1)环境数据使用当天数据,考虑到风向数据分布不一致的问题,将其剔除,只是用温度和风速作为特征输入。
4.入流流量数据
(1)历史8个点的时刻数据作为特征输入Q1-Q8
5.保留时序特征
(1)构造年、月、小时、小时IDX特征(保留时序,作为也可以理解为相近数据的权重)
在这里插入图片描述

6.数据构造
按照待预测的时间段进行测试集构造。
在这里插入图片描述

模型构建
这里使用的是五折的交叉验证,对最终结果也是5折之后的平均结果。
在这里插入图片描述

结果预测
对5段结果进行分别预测。每一次的输出作为下一次的输入,进行构造Q1-Q8的特征更新。五段预测方式一致。
在这里插入图片描述
结果提交
将5段结果数据进行拼接,保存至csv进行提交。
在这里插入图片描述

6.总结
从模型表现来看,最终结果五段结果均为负数,但是整体偏差不大,鲁棒性比较强,最终五段的平均在-75左右,其他朋友的模型肯定都比这个模型更加精致,从表现来看,他们在其他几段预测的结果表现都很不错,比这个模型更强,但是在第四段出现了意外,但这也是数据中不可计算的意外。他们的方案更加值得学习,共同进步,共同学习。

完整代码下载地址:水电站入库流量预测

这篇关于Python基于机器学习模型LightGBM进行水电站流量入库预测项目源码+数据集+模型,含项目报告的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/417825

相关文章

Nginx屏蔽服务器名称与版本信息方式(源码级修改)

《Nginx屏蔽服务器名称与版本信息方式(源码级修改)》本文详解如何通过源码修改Nginx1.25.4,移除Server响应头中的服务类型和版本信息,以增强安全性,需重新配置、编译、安装,升级时需重复... 目录一、背景与目的二、适用版本三、操作步骤修改源码文件四、后续操作提示五、注意事项六、总结一、背景与

Android实现图片浏览功能的示例详解(附带源码)

《Android实现图片浏览功能的示例详解(附带源码)》在许多应用中,都需要展示图片并支持用户进行浏览,本文主要为大家介绍了如何通过Android实现图片浏览功能,感兴趣的小伙伴可以跟随小编一起学习一... 目录一、项目背景详细介绍二、项目需求详细介绍三、相关技术详细介绍四、实现思路详细介绍五、完整实现代码

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

基于 Cursor 开发 Spring Boot 项目详细攻略

《基于Cursor开发SpringBoot项目详细攻略》Cursor是集成GPT4、Claude3.5等LLM的VSCode类AI编程工具,支持SpringBoot项目开发全流程,涵盖环境配... 目录cursor是什么?基于 Cursor 开发 Spring Boot 项目完整指南1. 环境准备2. 创建

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践