Python基于机器学习模型LightGBM进行水电站流量入库预测项目源码+数据集+模型,含项目报告

本文主要是介绍Python基于机器学习模型LightGBM进行水电站流量入库预测项目源码+数据集+模型,含项目报告,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.前言
该文档主要是介绍通过机器学习模型LightGBM进行水电站流量入库预测。 对于水电站来说,发电是主要经济效益来源,而水就是生产的原料。对进入水电站水库的入库流量进行精准预测,能够帮助水电站对防洪、发电计划调度工作进行合理安排,实现避免洪涝灾害和提升发电经济效益的目的。
在这里插入图片描述

2.目标
基于历史数据和当前观测信息,对电站未来7日入库流量进行预测(每3小时一个预测值,共56个待预测值)。
3.数据解析
竞赛主办方共提供了4类数据,包括历史入库流量数据、环境数据、降雨预报数据以及遥测站降雨观测数据。数据均为时序数据。
其中入库流量数据包含时间和流量两个字段。环境数据提供了温度、风速、方向三个字段。天气预报包含了未来五天的降雨情况。遥测站数据则包括了39个点的降雨量。
初赛提供:2013年-2018年的历史数据
决赛提供:2019年数据
数据维度:3小时为一个粒度点
数据缺失:初赛数据在14年缺少部分数据,决赛未提供18年数据
综上述,经过对数据的了解和分析,影响模型预测主要归纳为一下四个方面:
历史数据存在样本缺失
使用何种模型进行预测,NN还是回归
如何选取、构造特征,使用特征
数据的准确性
4.赛题分析与模型选择
从数据表现来看,是一个完完全全的时序题,针对时序题的做法有很多,找周期拟合、使用NN模型,本人尝试过LSTM、GRU、RNN、CNN等,通过线下拟合,自划分样本进行测试,可以观测到拟合效果非常好
(如图4-1),但是反馈则是,只是存在部分段分数很高,部分分段很低,导致结果评分为BR,模型稳定性差。
遂转换思路,将问题转换成线性拟合问题,将时序数据看成一个单独的点,构造特征将时序保留,进行回归预测,重新构造测试数据,预测的输出作为下一次预测的输入,进行预测。最终选择竞赛界比较通用的LightGBM模型进行线性拟合。得到的表现却是各段分数平平如其,虽然分数较低,但是每一段的偏差相差不大,模型表现较为稳定。相对NN鲁棒性更强,这也是为什么在决赛选择LightGBM的原因。各个特征的重要程度表现如图4-2所示。
在这里插入图片描述

图4-1 cnn-gru拟合
在这里插入图片描述

图4-2 特征重要度
5.方法
数据预处理
将初赛、复赛数据读入,相同类别数据进行concat合并。如历史入库数据。并将时间转换成datetime格式。其他三类数据类似处理。
在这里插入图片描述

特征工程、训练集、测试集构造
1.遥测站数据处理和特征工程
(1)39个遥测站数据直接求和,而且发现遥测站的数据更像是一个类别数据,和QI也存在一定的相关性。
(2)将原始的天数据转换成入库流量一直的时序数据3H粒度数据,方便关联
2.天气预报数据
(1)这里使用的前期预报不是未来五天,而是前三天的一个天气预报作为特征输入。
在这里插入图片描述

3.环境数据
(1)环境数据使用当天数据,考虑到风向数据分布不一致的问题,将其剔除,只是用温度和风速作为特征输入。
4.入流流量数据
(1)历史8个点的时刻数据作为特征输入Q1-Q8
5.保留时序特征
(1)构造年、月、小时、小时IDX特征(保留时序,作为也可以理解为相近数据的权重)
在这里插入图片描述

6.数据构造
按照待预测的时间段进行测试集构造。
在这里插入图片描述

模型构建
这里使用的是五折的交叉验证,对最终结果也是5折之后的平均结果。
在这里插入图片描述

结果预测
对5段结果进行分别预测。每一次的输出作为下一次的输入,进行构造Q1-Q8的特征更新。五段预测方式一致。
在这里插入图片描述
结果提交
将5段结果数据进行拼接,保存至csv进行提交。
在这里插入图片描述

6.总结
从模型表现来看,最终结果五段结果均为负数,但是整体偏差不大,鲁棒性比较强,最终五段的平均在-75左右,其他朋友的模型肯定都比这个模型更加精致,从表现来看,他们在其他几段预测的结果表现都很不错,比这个模型更强,但是在第四段出现了意外,但这也是数据中不可计算的意外。他们的方案更加值得学习,共同进步,共同学习。

完整代码下载地址:水电站入库流量预测

这篇关于Python基于机器学习模型LightGBM进行水电站流量入库预测项目源码+数据集+模型,含项目报告的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/417825

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Springboot项目启动失败提示找不到dao类的解决

《Springboot项目启动失败提示找不到dao类的解决》SpringBoot启动失败,因ProductServiceImpl未正确注入ProductDao,原因:Dao未注册为Bean,解决:在启... 目录错误描述原因解决方法总结***************************APPLICA编

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3