C++单调向量算法:得到山形数组的最少删除次数

2023-11-23 07:36

本文主要是介绍C++单调向量算法:得到山形数组的最少删除次数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本题的其它解法

C++二分算法:得到山形数组的最少删除次数

题目

我们定义 arr 是 山形数组 当且仅当它满足:
arr.length >= 3
存在某个下标 i (从 0 开始) 满足 0 < i < arr.length - 1 且:
arr[0] < arr[1] < … < arr[i - 1] < arr[i]
arr[i] > arr[i + 1] > … > arr[arr.length - 1]
给你整数数组 nums​ ,请你返回将 nums 变成 山形状数组 的​ 最少 删除次数。
示例 1:
输入:nums = [1,3,1]
输出:0
解释:数组本身就是山形数组,所以我们不需要删除任何元素。
示例 2:
输入:nums = [2,1,1,5,6,2,3,1]
输出:3
解释:一种方法是将下标为 0,1 和 5 的元素删除,剩余元素为 [1,5,6,3,1] ,是山形数组。
参数范围
3 <= nums.length <= 1000
1 <= nums[i] <= 109
题目保证 nums 删除一些元素后一定能得到山形数组。

分析

本题可以转换成:最长山形数组,再进一步转换成最长升序子序列。

时间复杂度

时间复杂度O(nlogn)。分两步:一,寻找左半部分。二,寻找右半部分。每步枚举每个山顶,时间复杂度O(n),每个山顶二分查找一次,时间复杂度O(logn)。

vLenToMin

vLenToMin[i]的含义是 长度为i+1 的子序列 的结尾,如果有多个符合的子序列,取结尾最小的。
比如:

原始数组vLenToMin
11
1 2{1}->{1,2}
2 1{2}->{1}
1 2 3{1}->{1,2
1 3 3 4 5{1}->{1,3}->{1,3,4}->{1,3,4,5}
1 3 5 4{1}->{1,3}->{1,3,5}->{1,3,4}

总结

一,只会在尾部增加元素。不会在其它位置增加元素。
二,不会删除元素。
三,会替换元素。
四,严格递增。
五,所有的数都小于当前值时,在末尾增加,显然是升序。
六,it第一个大于等于n的迭代器,之前的元素一定严格小于it,而it<=n,故前面元素一定小于n。
后面的元素不会ij等于it,否则它就是*it。[ii,…)都大于等于n,所有ij不会小于n。
七,规则五和六保证了vLenToMin永远严格递增。

代码

核心代码

class Solution {
public:int minimumMountainRemovals(vector<int>& nums) {vector<int> vLeftLen,vRightLen;Do(vLeftLen, nums);Do(vRightLen, vector<int>(nums.rbegin(), nums.rend()));std::reverse(vRightLen.begin(), vRightLen.end());int iMaxLen = 0;for (int i = 1; i+1 < nums.size(); i++){if ((vLeftLen[i] > 1) && (vRightLen[i] > 1)){iMaxLen = max(iMaxLen, vLeftLen[i] + vRightLen[i] - 1);}}return nums.size() - iMaxLen;}void Do(vector<int>& vLen, const vector<int> nums){vector<int> vLenToMin;//vLenToMin[i]的含义是 长度为i+1 的子序列 的结尾,如果有多个符合的子序列,取结尾最小的。for (const auto& n : nums){auto it = std::lower_bound(vLenToMin.begin(), vLenToMin.end(), n);vLen.emplace_back(it - vLenToMin.begin() + 1);if (vLenToMin.end() == it){vLenToMin.emplace_back(n);}else{if (n < *it){*it = n;}}}}
};

测试用例

template
void Assert(const T& t1, const T& t2)
{
assert(t1 == t2);
}

template
void Assert(const vector& v1, const vector& v2)
{
if (v1.size() != v2.size())
{
assert(false);
return;
}
for (int i = 0; i < v1.size(); i++)
{
Assert(v1[i], v2[i]);
}
}

int main()
{
vector nums;
int res;
{
Solution slu;
nums = { 1,3,1 };
res = slu.minimumMountainRemovals(nums);
Assert(0, res);
}
{
Solution slu;
nums = { 2, 1, 1, 5, 6, 2, 3, 1 };
res = slu.minimumMountainRemovals(nums);
Assert(3, res);
}
{
Solution slu;
nums = { 9, 8, 1, 7, 6, 5, 4, 3, 2, 1 };
res = slu.minimumMountainRemovals(nums);
Assert(2, res);
}
{
Solution slu;
nums = { 100, 92, 89, 77, 74, 66, 64, 66, 64 };
res = slu.minimumMountainRemovals(nums);
Assert(6, res);
}
{
Solution slu;
nums = { 1, 2, 1, 3, 4, 4 };
res = slu.minimumMountainRemovals(nums);
Assert(3, res);
}

//CConsole::Out(res);

}

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

这篇关于C++单调向量算法:得到山形数组的最少删除次数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/416358

相关文章

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

C++ STL-string类底层实现过程

《C++STL-string类底层实现过程》本文实现了一个简易的string类,涵盖动态数组存储、深拷贝机制、迭代器支持、容量调整、字符串修改、运算符重载等功能,模拟标准string核心特性,重点强... 目录实现框架一、默认成员函数1.默认构造函数2.构造函数3.拷贝构造函数(重点)4.赋值运算符重载函数

C++ vector越界问题的完整解决方案

《C++vector越界问题的完整解决方案》在C++开发中,std::vector作为最常用的动态数组容器,其便捷性与性能优势使其成为处理可变长度数据的首选,然而,数组越界访问始终是威胁程序稳定性的... 目录引言一、vector越界的底层原理与危害1.1 越界访问的本质原因1.2 越界访问的实际危害二、基

MySQL 数据库表操作完全指南:创建、读取、更新与删除实战

《MySQL数据库表操作完全指南:创建、读取、更新与删除实战》本文系统讲解MySQL表的增删查改(CURD)操作,涵盖创建、更新、查询、删除及插入查询结果,也是贯穿各类项目开发全流程的基础数据交互原... 目录mysql系列前言一、Create(创建)并插入数据1.1 单行数据 + 全列插入1.2 多行数据

mybatisplus的逻辑删除过程

《mybatisplus的逻辑删除过程》:本文主要介绍mybatisplus的逻辑删除过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录myBATisplus的逻辑删除1、在配置文件中添加逻辑删除的字段2、在实体类上加上@TableLogic3、业务层正常删除即

c++日志库log4cplus快速入门小结

《c++日志库log4cplus快速入门小结》文章浏览阅读1.1w次,点赞9次,收藏44次。本文介绍Log4cplus,一种适用于C++的线程安全日志记录API,提供灵活的日志管理和配置控制。文章涵盖... 目录简介日志等级配置文件使用关于初始化使用示例总结参考资料简介log4j 用于Java,log4c

C++归并排序代码实现示例代码

《C++归并排序代码实现示例代码》归并排序将待排序数组分成两个子数组,分别对这两个子数组进行排序,然后将排序好的子数组合并,得到排序后的数组,:本文主要介绍C++归并排序代码实现的相关资料,需要的... 目录1 算法核心思想2 代码实现3 算法时间复杂度1 算法核心思想归并排序是一种高效的排序方式,需要用

MybatisPlus中removeById删除数据库未变解决方案

《MybatisPlus中removeById删除数据库未变解决方案》MyBatisPlus中,removeById需实体类标注@TableId注解以识别数据库主键,若字段名不一致,应通过value属... 目录MyBATisPlus中removeBypythonId删除数据库未变removeById(Se

Java中数组与栈和堆之间的关系说明

《Java中数组与栈和堆之间的关系说明》文章讲解了Java数组的初始化方式、内存存储机制、引用传递特性及遍历、排序、拷贝技巧,强调引用数据类型方法调用时形参可能修改实参,但需注意引用指向单一对象的特性... 目录Java中数组与栈和堆的关系遍历数组接下来是一些编程小技巧总结Java中数组与栈和堆的关系关于

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3