机械寿命预测(基于NASA C-MAPSS数据的剩余使用寿命RUL预测,Python代码,CNN_LSTM模型,有详细中文注释)

本文主要是介绍机械寿命预测(基于NASA C-MAPSS数据的剩余使用寿命RUL预测,Python代码,CNN_LSTM模型,有详细中文注释),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.效果视频:机械寿命预测(NASA涡轮风扇发动机剩余使用寿命RUL预测,Python代码,CNN_LSTM模型,有详细中文注释)_哔哩哔哩_bilibili

环境库版本:

2.数据来源:https://www.nasa.gov/intelligent-systems-division

数据文件夹 

数据介绍: 

当前基于机器学习的剩余寿命预测方法的研究异常火爆,其中C-MAPSS数据集在该领域的使用非常广泛,为了方便各位同仁的学习和理解,借此文章向大家简单介绍一下。
1)首先说明,C-MAPSS数据集为模拟数据。这是由于航空发动机的构造复杂,其气路变化复杂多变;并且航空发动机的运行数据通常作为各个航空公司的保密数据,一般不易获取。因此由NASA使用Commercial Modular Aero-Propulsion System Simulation软件生成了该套数据集,其目的是结合发动机的运行特点,来测试不同的模型性能。
2)NASA提出的涡扇引擎退化监测数据集(C-MPASS)的结构简图如下所示。主要构件包含风扇、低压压气机(LPC)、高压压气机(HPC)、燃烧室、高压涡轮(HPT)、低压涡轮(LPT)及其喷管。


 其子数据集共四个,每个子类都有不同数量的工况条件和故障状态。C-MAPSS数据如下图所示

 当前的论文研究中,主要以单工况、单故障状态的FD001数据集为主(笔者认为该数据集相对简单,相比于多工况数据,不需要额外的数据处理)。以FD001为例,其进一步分为训练和测试子集,其包含1种故障状态和1种工况。训练集Train_FD001.txt收录了100台保持全寿命循环状态的发动机参数信息;测试集Test_FD001.txt收录了100台非全寿命循环状态的发动机参数信息,即仅包含发动机故障前某个时间终止的多个传感器数据,根据给定的运行参数对每台发动机的RUL进行实时的预测;RUL_FD001.txt中收录了测试集中100台发动机的RUL真实值。每台发动机的参数信息包含3种工作状况监测参数(飞行高度,马赫数,油门杆角度)和21个性能监测参数,其24个传感器监测参数如下图所示。

单工况数据集
1)单工况。笔者认为,所谓的单工况可以理解为飞机巡航时所记录的时间节点,大致可以认为飞机巡航时其工况参数(飞行高度、马赫数和油门杆角度)是不变化的。
2)随机选取FD001训练数据集中的发动机3个性能参数进行可视化分析,如下图所示。图中横坐标代表发动机的运行循环数(所谓运行循环数,是指发动机从出厂到下发的过程中,记录发动机性能参数变化的不同时间节点。直观来讲就是:并非发动机从运行到下发的每一个时间点都记录,只是记录的各个飞行时间段中的某些时间节点。),纵坐标代表各个参数的变化量。其中不同的颜色代表不同的发动机。由图可见,单工况的数据在运行周期内具有明显的单调变化特性,这更有助于机器学习模型对于故障特征的判断。

多工况。基于前面的理解,多工况可以理解为包含了发动机从滑跑、起飞、巡航和降落的不同阶段。由于工况的不断变化,其参数的变化特点也更为复杂。
1)随机选取FD002训练数据集中的发动机三个性能参数进行可视化分析,如下图所示。由图可见。多工况的性能参数在运行周期中没有显现出明显的单调特性,这不利于机器学习。相比于单工况,机器学习模型不能有效的学习到关键的退化特征。更详细的介绍可参照论文(赵洪利,张奔,张青.基于工况聚类和残差自注意力的发动机剩余使用寿命预测[J].航空科学技术,2023,34(04):31-40.DOI:10.19452/j.issn1007-5453.2023.04.004.)

3.模型

 4.CNN_LSTM模型的效果

预测值与真实值对比 

对项目感兴趣的,可以关注最后一行

from matplotlib import pyplot as plt
plt.rcParams['font.sans-serif']=['simhei'] # 添加中文字体为黑体
plt.rcParams['axes.unicode_minus'] =False
# -*- coding: utf-8 -*-import numpy as np  # 导入NumPy库,用于进行数值计算
import pandas as pd  # 导入Pandas库,用于数据处理和CSV文件读写#代码和数据集的压缩包:https://mbd.pub/o/bread/ZJ6Wlp9s

这篇关于机械寿命预测(基于NASA C-MAPSS数据的剩余使用寿命RUL预测,Python代码,CNN_LSTM模型,有详细中文注释)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/410956

相关文章

使用Redis快速实现共享Session登录的详细步骤

《使用Redis快速实现共享Session登录的详细步骤》在Web开发中,Session通常用于存储用户的会话信息,允许用户在多个页面之间保持登录状态,Redis是一个开源的高性能键值数据库,广泛用于... 目录前言实现原理:步骤:使用Redis实现共享Session登录1. 引入Redis依赖2. 配置R

使用Python的requests库调用API接口的详细步骤

《使用Python的requests库调用API接口的详细步骤》使用Python的requests库调用API接口是开发中最常用的方式之一,它简化了HTTP请求的处理流程,以下是详细步骤和实战示例,涵... 目录一、准备工作:安装 requests 库二、基本调用流程(以 RESTful API 为例)1.

Python清空Word段落样式的三种方法

《Python清空Word段落样式的三种方法》:本文主要介绍如何用python-docx库清空Word段落样式,提供三种方法:设置为Normal样式、清除直接格式、创建新Normal样式,注意需重... 目录方法一:直接设置段落样式为"Normal"方法二:清除所有直接格式设置方法三:创建新的Normal样

Python调用LibreOffice处理自动化文档的完整指南

《Python调用LibreOffice处理自动化文档的完整指南》在数字化转型的浪潮中,文档处理自动化已成为提升效率的关键,LibreOffice作为开源办公软件的佼佼者,其命令行功能结合Python... 目录引言一、环境搭建:三步构建自动化基石1. 安装LibreOffice与python2. 验证安装

把Python列表中的元素移动到开头的三种方法

《把Python列表中的元素移动到开头的三种方法》在Python编程中,我们经常需要对列表(list)进行操作,有时,我们希望将列表中的某个元素移动到最前面,使其成为第一项,本文给大家介绍了把Pyth... 目录一、查找删除插入法1. 找到元素的索引2. 移除元素3. 插入到列表开头二、使用列表切片(Lis

Python按照24个实用大方向精选的上千种工具库汇总整理

《Python按照24个实用大方向精选的上千种工具库汇总整理》本文整理了Python生态中近千个库,涵盖数据处理、图像处理、网络开发、Web框架、人工智能、科学计算、GUI工具、测试框架、环境管理等多... 目录1、数据处理文本处理特殊文本处理html/XML 解析文件处理配置文件处理文档相关日志管理日期和

Python标准库datetime模块日期和时间数据类型解读

《Python标准库datetime模块日期和时间数据类型解读》文章介绍Python中datetime模块的date、time、datetime类,用于处理日期、时间及日期时间结合体,通过属性获取时间... 目录Datetime常用类日期date类型使用时间 time 类型使用日期和时间的结合体–日期时间(

使用Python开发一个Ditto剪贴板数据导出工具

《使用Python开发一个Ditto剪贴板数据导出工具》在日常工作中,我们经常需要处理大量的剪贴板数据,下面将介绍如何使用Python的wxPython库开发一个图形化工具,实现从Ditto数据库中读... 目录前言运行结果项目需求分析技术选型核心功能实现1. Ditto数据库结构分析2. 数据库自动定位3

Python yield与yield from的简单使用方式

《Pythonyield与yieldfrom的简单使用方式》生成器通过yield定义,可在处理I/O时暂停执行并返回部分结果,待其他任务完成后继续,yieldfrom用于将一个生成器的值传递给另一... 目录python yield与yield from的使用代码结构总结Python yield与yield

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl