PyTorch深度学习实践概论笔记9练习-​使用kaggle的Otto数据集做多分类​

本文主要是介绍PyTorch深度学习实践概论笔记9练习-​使用kaggle的Otto数据集做多分类​,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在文章PyTorch深度学习实践概论笔记9-SoftMax分类器中刘老师给了一个课后练习题,下载kaggle的Otto数据集做多分类。

0 Overview

先看看官网给的背景介绍。

The Otto Group is one of the world’s biggest e-commerce companies, with subsidiaries in more than 20 countries, including Crate & Barrel (USA), Otto.de (Germany) and 3 Suisses (France). We are selling millions of products worldwide every day, with several thousand products being added to our product line.

奥托集团是世界上最大的电子商务公司之一,在20多个国家拥有子公司,包括美国的Crate & Barrel,德国的Otto.de和法国的3 Suisse。我们每天在全球销售数以百万计的产品,其中有几千种产品加入到我们的产品线中。】

A consistent analysis of the performance of our products is crucial. However, due to our diverse global infrastructure, many identical products get classified differently. Therefore, the quality of our product analysis depends heavily on the ability to accurately cluster similar products. The better the classification, the more insights we can generate about our product range.

对我们产品性能的一致分析是至关重要的。然而,由于我们多元化的全球基础设施,许多相同的产品被分类不同。因此,我们产品分析的质量在很大程度上依赖于对相似产品进行准确聚类的能力。分类越好,我们对产品范围的了解就越多。】

For this competition, we have provided a dataset with 93 features for more than 200,000 products. The objective is to build a predictive model which is able to distinguish between our main product categories. The winning models will be open sourced.

【在这次竞赛中,我们为超过200,000个产品提供了包含93个特性的数据集。我们的目标是建立一个能够区分我们主要产品类别的预测模型。获奖的模型将是开源的。】

1 数据获取

点击官网链接Otto Group Product Classification Challenge | Kaggle可以下载。

2 查看数据

先读取数据,然后查看一下数据情况。

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
#1.读取数据
otto_data = pd.read_csv("./otto/train.csv")
otto_data.describe()  #8 rows × 94 columns(id  feat_1 ... feat_93)otto_data.shape

train数据集一共61878行95列(包括上述特征和target),94个非字符型特征的简单描述统计结果如上图所示。

由于target是字符型变量,我们画图展示,代码如下:

import seaborn as sns
sns.countplot(otto_data["target"])
plt.show()

target一共9个类别。由于是字符型,定义一个函数将target的类别标签转为index表示,方便后面计算交叉熵,代码如下:

def target2idx(targets):target_idx = []target_labels = ['Class_1', 'Class_2', 'Class_3', 'Class_4', 'Class_5', 'Class_6', 'Class_7', 'Class_8', 'Class_9','Class_10']for target in targets:target_idx.append(target_labels.index(target))return target_idx

3 构建模型

3.1 读取数据

import numpy as np
import pandas as pd
from torch.utils.data import Dataset, DataLoader
import torch
import torch.optim as optim#1.读取数据
class OttoDataset(Dataset):def __init__(self,filepath):data = pd.read_csv(filepath)labels = data['target']self.len = data.shape[0]self.X_data = torch.tensor(np.array(data)[:,1:-1].astype(float))self.y_data = target2idx(labels)def __getitem__(self, index):return self.X_data[index], self.y_data[index]def __len__(self):return self.lenotto_dataset1 = OttoDataset('./otto/train.csv')
otto_dataset2 = OttoDataset('./otto/testn.csv')
train_loader = DataLoader(dataset=otto_dataset1, batch_size=64, shuffle=True, num_workers=2)
test_loader = DataLoader(dataset=otto_dataset2, batch_size=64, shuffle=False, num_workers=2)

3.2 构建模型

#2.构建模型
class OttoNet(torch.nn.Module):def __init__(self):super(OttoNet, self).__init__()self.linear1 = torch.nn.Linear(93, 64)self.linear2 = torch.nn.Linear(64, 32)self.linear3 = torch.nn.Linear(32, 16)self.linear4 = torch.nn.Linear(16, 9)self.relu = torch.nn.ReLU()self.dropout = torch.nn.Dropout(p=0.1)self.softmax = torch.nn.Softmax(dim=1)def forward(self, x):x = x.view(-1,93)x = self.relu(self.linear1(x))x = self.relu(self.linear2(x))x = self.dropout(x)x = self.relu(self.linear3(x))x = self.linear4(x)x = self.softmax(x)return xottomodel = OttoNet()
ottomodel

输出:

OttoNet((linear1): Linear(in_features=93, out_features=64, bias=True)(linear2): Linear(in_features=64, out_features=32, bias=True)(linear3): Linear(in_features=32, out_features=16, bias=True)(linear4): Linear(in_features=16, out_features=9, bias=True)(relu): ReLU()(dropout): Dropout(p=0.1, inplace=False)(softmax): Softmax(dim=1)
)

3.3 构造loss和优化器

#3.loss和优化器
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(ottomodel.parameters(), lr=0.01, momentum=0.56)

3.4 训练模型

if __name__ == '__main__':for epoch in range(10):running_loss = 0.0for batch, data in enumerate(train_loader):inputs, target = dataoptimizer.zero_grad()outputs = ottomodel(inputs.float())loss = criterion(outputs, target)loss.backward()optimizer.step()running_loss += loss.item()if batch % 500 == 499:print('[%d, %5d] loss: %.3f' % (epoch+1, batch+1, running_loss/300))running_loss = 0.0

输出:

[1,   500] loss: 3.591
[2,   500] loss: 3.011
[3,   500] loss: 2.957
[4,   500] loss: 2.940
[5,   500] loss: 2.902
[6,   500] loss: 2.881
[7,   500] loss: 2.873
[8,   500] loss: 2.800
[9,   500] loss: 2.789
[10,   500] loss: 2.779

3.5 预测

with torch.no_grad():output = []for data in test_loader:inputs,labels = dataoutputs = torch.max(ottomodel(inputs.float()),1)[1]output.extend(outputs.numpy().tolist())

保存结果,并提交至kaggle。

submission = pd.read_csv('./otto/sampleSubmission.csv')#(144368, 10)
submission['target'] = output
submission.to_csv('./otto/submission_result1.csv', index=False)

提交失败,数据的格式不对,查看原因中,碰到相同问题的小伙伴可以告诉我,感谢。

说明:记录学习笔记,如果错误欢迎指正!写文章不易,转载请联系我。

这篇关于PyTorch深度学习实践概论笔记9练习-​使用kaggle的Otto数据集做多分类​的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/404837

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Linux join命令的使用及说明

《Linuxjoin命令的使用及说明》`join`命令用于在Linux中按字段将两个文件进行连接,类似于SQL的JOIN,它需要两个文件按用于匹配的字段排序,并且第一个文件的换行符必须是LF,`jo... 目录一. 基本语法二. 数据准备三. 指定文件的连接key四.-a输出指定文件的所有行五.-o指定输出

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

JDK21对虚拟线程的几种用法实践指南

《JDK21对虚拟线程的几种用法实践指南》虚拟线程是Java中的一种轻量级线程,由JVM管理,特别适合于I/O密集型任务,:本文主要介绍JDK21对虚拟线程的几种用法,文中通过代码介绍的非常详细,... 目录一、参考官方文档二、什么是虚拟线程三、几种用法1、Thread.ofVirtual().start(

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础