NLP(五十四)在Keras中使用英文Roberta模型实现文本分类

2023-11-09 03:50

本文主要是介绍NLP(五十四)在Keras中使用英文Roberta模型实现文本分类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  英文Roberta模型是2019年Facebook在论文RoBERTa: A Robustly Optimized BERT Pretraining Approach中新提出的预训练模型,其目的是改进BERT模型存在的一些问题,当时也刷新了一众NLP任务的榜单,达到SOTA效果,其模型和代码已开源,放在Github中的fairseq项目中。众所周知,英文Roberta模型使用Torch框架训练的,因此,其torch版本模型最为常见。
  当然,torch模型也是可以转化为tensorflow模型的。本文将会介绍如何将原始torch版本的英文Roberta模型转化为tensorflow版本模型,并且Keras中使用tensorflow版本模型实现英语文本分类。
  项目结构如下图所示:
项目结构图

模型转化

  本项目首先会将原始torch版本的英文Roberta模型转化为tensorflow版本模型,该部分代码主要参考Github项目keras_roberta。
  首先需下载Facebook发布在fairseq项目中的roberta base模型,其访问网址为: https://github.com/pytorch/fairseq/blob/main/examples/roberta/README.md。
Roberta模型
运行convert_roberta_to_tf.py脚本,将torch模型转化为tensorflow模型。具体代码不在此给出,可以参考文章后续给出的Github项目地址。
  在模型的tokenizer方面,将RobertaTokenizer改为GPT2Tokenizer,因为RobertaTokenizer是继承自GPT2Tokenizer的,两者相似性很高。测试原始torch模型和tensorflow模型的表现,代码如下(tf_roberta_demo.py):

import os
import tensorflow as tf
from keras_roberta.roberta import build_bert_model
from keras_roberta.tokenizer import RobertaTokenizer
from fairseq.models.roberta import RobertaModel as FairseqRobertaModel
import numpy as np
import argparseif __name__ == '__main__':roberta_path = 'roberta-base'tf_roberta_path = 'tf_roberta_base'tf_ckpt_name = 'tf_roberta_base.ckpt'vocab_path = 'keras_roberta'config_path = os.path.join(tf_roberta_path, 'bert_config.json')checkpoint_path = os.path.join(tf_roberta_path, tf_ckpt_name)if os.path.splitext(checkpoint_path)[-1] != '.ckpt':checkpoint_path += '.ckpt'gpt_bpe_vocab = os.path.join(vocab_path, 'encoder.json')gpt_bpe_merge = os.path.join(vocab_path, 'vocab.bpe')roberta_dict = os.path.join(roberta_path, 'dict.txt')tokenizer = RobertaTokenizer(gpt_bpe_vocab, gpt_bpe_merge, roberta_dict)model = build_bert_model(config_path, checkpoint_path, roberta=True)  # 建立模型,加载权重# 编码测试text1 = "hello, world!"text2 = "This is Roberta!"sep = [tokenizer.sep_token]cls = [tokenizer.cls_token]# 1. 先用'bpe_tokenize'将文本转换成bpe tokenstokens1 = cls + tokenizer.bpe_tokenize(text1) + septokens2 = sep + tokenizer.bpe_tokenize(text2) + sep# 2. 最后转换成idtoken_ids1 = tokenizer.convert_tokens_to_ids(tokens1)token_ids2 = tokenizer.convert_tokens_to_ids(tokens2)token_ids = token_ids1 + token_ids2segment_ids = [0] * len(token_ids1) + [1] * len(token_ids2)print(token_ids)print(segment_ids)print('\n ===== tf model predicting =====\n')our_output = model.predict([np.array([token_ids]), np.array([segment_ids])])print(our_output)print('\n ===== torch model predicting =====\n')roberta = FairseqRobertaModel.from_pretrained(roberta_path)roberta.eval()  # disable dropoutinput_ids = roberta.encode(text1, text2).unsqueeze(0)  # batch of size 1print(input_ids)their_output = roberta.model(input_ids, features_only=True)[0]print(their_output)

输出结果如下:

[0, 42891, 6, 232, 328, 2, 2, 713, 16, 1738, 102, 328, 2]
[0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1]===== tf model predicting =====
[[[-0.01123665  0.05132651 -0.02170264 ... -0.03562857 -0.02836962-0.00519008][ 0.04382067  0.07045364 -0.00431021 ... -0.04662359 -0.107701670.1121687 ][ 0.06198474  0.05240346  0.11088232 ... -0.08883709 -0.02932207-0.12898633]...[-0.00229368  0.045834    0.00811818 ... -0.11751424 -0.067181660.04085271][-0.08509324 -0.27506304 -0.02425355 ... -0.24215901 -0.154818250.17167582][-0.05180666  0.06384835 -0.05997407 ... -0.09398533 -0.05159672-0.03988626]]]===== torch model predicting =====
tensor([[    0, 42891,     6,   232,   328,     2,     2,   713,    16,  1738,102,   328,     2]])
tensor([[[-0.0525,  0.0818, -0.0170,  ..., -0.0546, -0.0569, -0.0099],[-0.0765, -0.0568, -0.1400,  ..., -0.2612, -0.0455,  0.2975],[-0.0142,  0.1184,  0.0530,  ..., -0.0844,  0.0199,  0.1340],...,[-0.0019,  0.1263, -0.0787,  ..., -0.3986, -0.0626,  0.1870],[ 0.0127, -0.2116,  0.0696,  ..., -0.1622, -0.1265,  0.0986],[-0.0473,  0.0748, -0.0419,  ..., -0.0892, -0.0595, -0.0281]]],grad_fn=<TransposeBackward0>)

可以看到,两者在tokenize时的token_ids是一致的。

英语文本分类

  接着我们需要看下转化为的tensorflow版本的Roberta模型在英语文本分类数据集上的效果了。
  这里我们使用的是GLUE数据集中的SST-2SST-2(The Stanford Sentiment Treebank,斯坦福情感树库),单句子分类任务,包含电影评论中的句子和它们情感的人类注释。这项任务是给定句子的情感,类别分为两类正面情感(positive,样本标签对应为1)和负面情感(negative,样本标签对应为0),并且只用句子级别的标签。也就是,本任务也是一个二分类任务,针对句子级别,分为正面和负面情感。关于该数据集的具体介绍可参考网址:https://nlp.stanford.edu/sentiment/index.html。
  SST-2数据集中训练集样本数量为67349,验证集样本数量为872,测试集样本数量为1820,数据存储格式为tsv,读取数据的代码如下:(utils/load_data.py)

def read_model_data(file_path):data = []with open(file_path, 'r', encoding='utf-8') as f:lines = [_.strip() for _ in f.readlines()]for i, line in enumerate(lines):if i:items = line.split('\t')label = [0, 1] if int(items[1]) else [1, 0]data.append([label, items[0]])return data

  在tokenizer部分,我们采用GTP2Tokenizer,该部分代码如下(utils/roberta_tokenizer.py):

# roberta tokenizer function for text pair
def tokenizer_encode(tokenizer, text, max_seq_length):sep = [tokenizer.sep_token]cls = [tokenizer.cls_token]# 1. 先用'bpe_tokenize'将文本转换成bpe tokenstokens1 = cls + tokenizer.bpe_tokenize(text) + sep# 2. 最后转换成idtoken_ids = tokenizer.convert_tokens_to_ids(tokens1)segment_ids = [0] * len(token_ids)pad_length = max_seq_length - len(token_ids)if pad_length >= 0:token_ids += [0] * pad_lengthsegment_ids += [0] * pad_lengthelse:token_ids = token_ids[:max_seq_length]segment_ids = segment_ids[:max_seq_length]return token_ids, segment_ids

  创建模型如下(model_train.py):

# 构建模型
def create_cls_model():# Roberta modelroberta_model = build_bert_model(CONFIG_FILE_PATH, CHECKPOINT_FILE_PATH, roberta=True)  # 建立模型,加载权重for layer in roberta_model.layers:layer.trainable = Truecls_layer = Lambda(lambda x: x[:, 0])(roberta_model.output)    # 取出[CLS]对应的向量用来做分类p = Dense(2, activation='softmax')(cls_layer)     # 多分类model = Model(roberta_model.input, p)model.compile(loss='categorical_crossentropy',optimizer=Adam(1e-5),   # 用足够小的学习率metrics=['accuracy'])return model

模型参数如下:

# 模型参数配置
EPOCH = 10              # 训练轮次
BATCH_SIZE = 64         # 批次数量
MAX_SEQ_LENGTH = 80     # 最大长度

模型训练完后,在验证数据集上的准确率(accuracy)为0.9415,F1值为0.9415,取得了不错效果。

模型预测

  我们对新样本进行模型预测(model_predict.py),预测结果如下:

Awesome movie for everyone to watch. Animation was flawless.
label: 1, prob: 0.9999607

I almost balled my eyes out 5 times. Almost. Beautiful movie, very inspiring.
label: 1, prob: 0.9999519

Not even worth it. It’s a movie that’s too stupid for adults, and too crappy for everyone. Skip if you’re not 13, or even if you are.
label: 0, prob: 0.9999864

总结

  本文介绍了如何将原始torch版本的英文Roberta模型转化为tensorflow版本模型,并且Keras中使用tensorflow版本模型实现英语文本分类。
  本项目代码已放至Github,网址为:https://github.com/percent4/keras_roberta_text_classificaiton。
  感谢阅读,如有任何问题,欢迎大家交流~

参考网址

  1. fairseq: https://github.com/pytorch/fairseq
  2. GLUE tasks: https://gluebenchmark.com/tasks
  3. SST-2: https://nlp.stanford.edu/sentiment/index.html
  4. keras_roberta: https://github.com/midori1/keras_roberta
  5. Roberta paper: https://arxiv.org/pdf/1907.11692.pdf

这篇关于NLP(五十四)在Keras中使用英文Roberta模型实现文本分类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/373851

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

springboot中使用okhttp3的小结

《springboot中使用okhttp3的小结》OkHttp3是一个JavaHTTP客户端,可以处理各种请求类型,比如GET、POST、PUT等,并且支持高效的HTTP连接池、请求和响应缓存、以及异... 在 Spring Boot 项目中使用 OkHttp3 进行 HTTP 请求是一个高效且流行的方式。

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函