NLP(五十四)在Keras中使用英文Roberta模型实现文本分类

2023-11-09 03:50

本文主要是介绍NLP(五十四)在Keras中使用英文Roberta模型实现文本分类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  英文Roberta模型是2019年Facebook在论文RoBERTa: A Robustly Optimized BERT Pretraining Approach中新提出的预训练模型,其目的是改进BERT模型存在的一些问题,当时也刷新了一众NLP任务的榜单,达到SOTA效果,其模型和代码已开源,放在Github中的fairseq项目中。众所周知,英文Roberta模型使用Torch框架训练的,因此,其torch版本模型最为常见。
  当然,torch模型也是可以转化为tensorflow模型的。本文将会介绍如何将原始torch版本的英文Roberta模型转化为tensorflow版本模型,并且Keras中使用tensorflow版本模型实现英语文本分类。
  项目结构如下图所示:
项目结构图

模型转化

  本项目首先会将原始torch版本的英文Roberta模型转化为tensorflow版本模型,该部分代码主要参考Github项目keras_roberta。
  首先需下载Facebook发布在fairseq项目中的roberta base模型,其访问网址为: https://github.com/pytorch/fairseq/blob/main/examples/roberta/README.md。
Roberta模型
运行convert_roberta_to_tf.py脚本,将torch模型转化为tensorflow模型。具体代码不在此给出,可以参考文章后续给出的Github项目地址。
  在模型的tokenizer方面,将RobertaTokenizer改为GPT2Tokenizer,因为RobertaTokenizer是继承自GPT2Tokenizer的,两者相似性很高。测试原始torch模型和tensorflow模型的表现,代码如下(tf_roberta_demo.py):

import os
import tensorflow as tf
from keras_roberta.roberta import build_bert_model
from keras_roberta.tokenizer import RobertaTokenizer
from fairseq.models.roberta import RobertaModel as FairseqRobertaModel
import numpy as np
import argparseif __name__ == '__main__':roberta_path = 'roberta-base'tf_roberta_path = 'tf_roberta_base'tf_ckpt_name = 'tf_roberta_base.ckpt'vocab_path = 'keras_roberta'config_path = os.path.join(tf_roberta_path, 'bert_config.json')checkpoint_path = os.path.join(tf_roberta_path, tf_ckpt_name)if os.path.splitext(checkpoint_path)[-1] != '.ckpt':checkpoint_path += '.ckpt'gpt_bpe_vocab = os.path.join(vocab_path, 'encoder.json')gpt_bpe_merge = os.path.join(vocab_path, 'vocab.bpe')roberta_dict = os.path.join(roberta_path, 'dict.txt')tokenizer = RobertaTokenizer(gpt_bpe_vocab, gpt_bpe_merge, roberta_dict)model = build_bert_model(config_path, checkpoint_path, roberta=True)  # 建立模型,加载权重# 编码测试text1 = "hello, world!"text2 = "This is Roberta!"sep = [tokenizer.sep_token]cls = [tokenizer.cls_token]# 1. 先用'bpe_tokenize'将文本转换成bpe tokenstokens1 = cls + tokenizer.bpe_tokenize(text1) + septokens2 = sep + tokenizer.bpe_tokenize(text2) + sep# 2. 最后转换成idtoken_ids1 = tokenizer.convert_tokens_to_ids(tokens1)token_ids2 = tokenizer.convert_tokens_to_ids(tokens2)token_ids = token_ids1 + token_ids2segment_ids = [0] * len(token_ids1) + [1] * len(token_ids2)print(token_ids)print(segment_ids)print('\n ===== tf model predicting =====\n')our_output = model.predict([np.array([token_ids]), np.array([segment_ids])])print(our_output)print('\n ===== torch model predicting =====\n')roberta = FairseqRobertaModel.from_pretrained(roberta_path)roberta.eval()  # disable dropoutinput_ids = roberta.encode(text1, text2).unsqueeze(0)  # batch of size 1print(input_ids)their_output = roberta.model(input_ids, features_only=True)[0]print(their_output)

输出结果如下:

[0, 42891, 6, 232, 328, 2, 2, 713, 16, 1738, 102, 328, 2]
[0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1]===== tf model predicting =====
[[[-0.01123665  0.05132651 -0.02170264 ... -0.03562857 -0.02836962-0.00519008][ 0.04382067  0.07045364 -0.00431021 ... -0.04662359 -0.107701670.1121687 ][ 0.06198474  0.05240346  0.11088232 ... -0.08883709 -0.02932207-0.12898633]...[-0.00229368  0.045834    0.00811818 ... -0.11751424 -0.067181660.04085271][-0.08509324 -0.27506304 -0.02425355 ... -0.24215901 -0.154818250.17167582][-0.05180666  0.06384835 -0.05997407 ... -0.09398533 -0.05159672-0.03988626]]]===== torch model predicting =====
tensor([[    0, 42891,     6,   232,   328,     2,     2,   713,    16,  1738,102,   328,     2]])
tensor([[[-0.0525,  0.0818, -0.0170,  ..., -0.0546, -0.0569, -0.0099],[-0.0765, -0.0568, -0.1400,  ..., -0.2612, -0.0455,  0.2975],[-0.0142,  0.1184,  0.0530,  ..., -0.0844,  0.0199,  0.1340],...,[-0.0019,  0.1263, -0.0787,  ..., -0.3986, -0.0626,  0.1870],[ 0.0127, -0.2116,  0.0696,  ..., -0.1622, -0.1265,  0.0986],[-0.0473,  0.0748, -0.0419,  ..., -0.0892, -0.0595, -0.0281]]],grad_fn=<TransposeBackward0>)

可以看到,两者在tokenize时的token_ids是一致的。

英语文本分类

  接着我们需要看下转化为的tensorflow版本的Roberta模型在英语文本分类数据集上的效果了。
  这里我们使用的是GLUE数据集中的SST-2SST-2(The Stanford Sentiment Treebank,斯坦福情感树库),单句子分类任务,包含电影评论中的句子和它们情感的人类注释。这项任务是给定句子的情感,类别分为两类正面情感(positive,样本标签对应为1)和负面情感(negative,样本标签对应为0),并且只用句子级别的标签。也就是,本任务也是一个二分类任务,针对句子级别,分为正面和负面情感。关于该数据集的具体介绍可参考网址:https://nlp.stanford.edu/sentiment/index.html。
  SST-2数据集中训练集样本数量为67349,验证集样本数量为872,测试集样本数量为1820,数据存储格式为tsv,读取数据的代码如下:(utils/load_data.py)

def read_model_data(file_path):data = []with open(file_path, 'r', encoding='utf-8') as f:lines = [_.strip() for _ in f.readlines()]for i, line in enumerate(lines):if i:items = line.split('\t')label = [0, 1] if int(items[1]) else [1, 0]data.append([label, items[0]])return data

  在tokenizer部分,我们采用GTP2Tokenizer,该部分代码如下(utils/roberta_tokenizer.py):

# roberta tokenizer function for text pair
def tokenizer_encode(tokenizer, text, max_seq_length):sep = [tokenizer.sep_token]cls = [tokenizer.cls_token]# 1. 先用'bpe_tokenize'将文本转换成bpe tokenstokens1 = cls + tokenizer.bpe_tokenize(text) + sep# 2. 最后转换成idtoken_ids = tokenizer.convert_tokens_to_ids(tokens1)segment_ids = [0] * len(token_ids)pad_length = max_seq_length - len(token_ids)if pad_length >= 0:token_ids += [0] * pad_lengthsegment_ids += [0] * pad_lengthelse:token_ids = token_ids[:max_seq_length]segment_ids = segment_ids[:max_seq_length]return token_ids, segment_ids

  创建模型如下(model_train.py):

# 构建模型
def create_cls_model():# Roberta modelroberta_model = build_bert_model(CONFIG_FILE_PATH, CHECKPOINT_FILE_PATH, roberta=True)  # 建立模型,加载权重for layer in roberta_model.layers:layer.trainable = Truecls_layer = Lambda(lambda x: x[:, 0])(roberta_model.output)    # 取出[CLS]对应的向量用来做分类p = Dense(2, activation='softmax')(cls_layer)     # 多分类model = Model(roberta_model.input, p)model.compile(loss='categorical_crossentropy',optimizer=Adam(1e-5),   # 用足够小的学习率metrics=['accuracy'])return model

模型参数如下:

# 模型参数配置
EPOCH = 10              # 训练轮次
BATCH_SIZE = 64         # 批次数量
MAX_SEQ_LENGTH = 80     # 最大长度

模型训练完后,在验证数据集上的准确率(accuracy)为0.9415,F1值为0.9415,取得了不错效果。

模型预测

  我们对新样本进行模型预测(model_predict.py),预测结果如下:

Awesome movie for everyone to watch. Animation was flawless.
label: 1, prob: 0.9999607

I almost balled my eyes out 5 times. Almost. Beautiful movie, very inspiring.
label: 1, prob: 0.9999519

Not even worth it. It’s a movie that’s too stupid for adults, and too crappy for everyone. Skip if you’re not 13, or even if you are.
label: 0, prob: 0.9999864

总结

  本文介绍了如何将原始torch版本的英文Roberta模型转化为tensorflow版本模型,并且Keras中使用tensorflow版本模型实现英语文本分类。
  本项目代码已放至Github,网址为:https://github.com/percent4/keras_roberta_text_classificaiton。
  感谢阅读,如有任何问题,欢迎大家交流~

参考网址

  1. fairseq: https://github.com/pytorch/fairseq
  2. GLUE tasks: https://gluebenchmark.com/tasks
  3. SST-2: https://nlp.stanford.edu/sentiment/index.html
  4. keras_roberta: https://github.com/midori1/keras_roberta
  5. Roberta paper: https://arxiv.org/pdf/1907.11692.pdf

这篇关于NLP(五十四)在Keras中使用英文Roberta模型实现文本分类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/373851

相关文章

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ

PostgreSQL中MVCC 机制的实现

《PostgreSQL中MVCC机制的实现》本文主要介绍了PostgreSQL中MVCC机制的实现,通过多版本数据存储、快照隔离和事务ID管理实现高并发读写,具有一定的参考价值,感兴趣的可以了解一下... 目录一 MVCC 基本原理python1.1 MVCC 核心概念1.2 与传统锁机制对比二 Postg

SpringBoot整合Flowable实现工作流的详细流程

《SpringBoot整合Flowable实现工作流的详细流程》Flowable是一个使用Java编写的轻量级业务流程引擎,Flowable流程引擎可用于部署BPMN2.0流程定义,创建这些流程定义的... 目录1、流程引擎介绍2、创建项目3、画流程图4、开发接口4.1 Java 类梳理4.2 查看流程图4

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

苹果macOS 26 Tahoe主题功能大升级:可定制图标/高亮文本/文件夹颜色

《苹果macOS26Tahoe主题功能大升级:可定制图标/高亮文本/文件夹颜色》在整体系统设计方面,macOS26采用了全新的玻璃质感视觉风格,应用于Dock栏、应用图标以及桌面小部件等多个界面... 科技媒体 MACRumors 昨日(6 月 13 日)发布博文,报道称在 macOS 26 Tahoe 中

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.