java实现克鲁斯卡尔算法

2023-10-31 14:40

本文主要是介绍java实现克鲁斯卡尔算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

应用背景

在这里插入图片描述

  1. 某城市新增7个站点(A,B,C,D,E,F,G) ,现在需要修路把7个站点连通
  2. 各个站点的距离用边线表示(权),比如A~B距离12公里
  3. 问:如何修路保证各个站点都能连通,并且总的修建公路总里程最短?

克鲁斯卡尔算法介绍

  1. 克鲁斯卡尔(Kruskal)算法,是用来求加权连通图的最小生成树的算法。
  2. 基本思想: 按照权值从小到大的顺序选择n-1条边,并保证这n-1条边不构成回路
  3. 具体做法: 首先构造一个只含n 个顶点的森林,然后依权值从小到大从连通网中选择边加入到森林中,并使森林中不产生回路,直至森林变成一棵树为止
克鲁斯卡尔算法图解说明

以城市公交站问题来图解说明克鲁斯卡尔算法的原理和步骤:
在含有n个顶点的连通图中选择n-1条边,构成一棵极小连通子图,并使该连通子图中n-1条边上权值之和达到最小,则称其为连通网的最小生成树。
在这里插入图片描述
例如,对于如上图G4所示的连通网可以有多棵权值总和不相同的生成树。
在这里插入图片描述

克鲁斯卡尔算法图解

以上图G4为例,来对克鲁斯卡尔进行演示(假设,用数组R保存最小生成树结果)。

在这里插入图片描述
在这里插入图片描述

克鲁斯卡尔算法分析

根据前面介绍的克鲁斯卡尔算法的基本思想和做法,我们能够了解到,克鲁斯卡尔算法重点需要解决的以下两个问题:
问题一 对图的所有边按照权值大小进行排序。
问题二 将边添加到最小生成树中时,怎么样判断是否形成了回路。
问题一 很好解决,采用排序算法进行排序即可。
问题二,处理方式是:记录顶点在"最小生成树"中的终点,顶点的终点是"在最小生成树中与它连通的最大顶点"。然后每次需要将一条边添加到最小生存树时,判断该边的两个顶点的终点是否重合,重合的话则会构成回路。

如何判断是否构成回路-举例说明(如图)

在这里插入图片描述
在将<E,F> <C,D> <D,E> 加入到最小生成树R中之后,这几条边的顶点就都有了终点:
(01) C的终点是F。
(02) D的终点是F.
(03) E的终点是F。
(04) F的终点是F.
关于终点的说明:

  1. 就是将所有顶点按照从小到大的顺序排列好之后:某个顶点的终点就是"与它连通的最大顶点"。
  2. 因此,接下来,虽然<C,E>是权值最小的边。但是C和E的终点都是F,即它们的终点相同,因此,将<C,E>加入最小生成树的话,会形成回路。这就是判断回路的方式。也就是说,我们加入的边的两个顶点不能都指向同一个终点,否则将构成回路。[ 后面有代码说明]
实现代码
package ShangGuiGu.Kruskal;import javax.swing.text.EditorKit;/*** 克鲁斯卡尔算法*/
public class KruskalCase {private int edgeNum;private char[] vertexs; //顶点数组private int[][] matrix; //邻接矩阵//使用INF代表两个顶点不能连通private static final int INF=Integer.MAX_VALUE;//构造器public KruskalCase(char[] vertexs,int[][] matrix){this.vertexs=vertexs;this.matrix=matrix;//统计边的条数 邻接矩阵右上角for (int i = 0; i < vertexs.length; i++) {for (int j = i+1; j < vertexs.length; j++) {if (this.matrix[i][j]!=INF){this.edgeNum++;}}}}public static void main(String[] args) {char[] vertexs= {'A','B','C', 'D', 'E','F','G'};//克魯斯卡尔算法的邻接矩阵int matrix[][]= {/*A*/  /*B*//*C*/ /*D*/ /*E*/ /*F*//*G*//*A*/ { 0,   12,  INF,  INF,  INF,  16,  14},/*B*/ { 12,  0,   10,   INF,  INF,  7,   INF},/*C*/ { INF, 10,  0,    3,    5,    6,   INF},/*D*/ { INF, INF, 3,    0,    4,    INF, INF},/*E*/ { INF, INF, 5,    4,    0,    2,   8},/*F*/ { 16,  7,   6,    INF,  2,    0,   9},/*G*/ { 14,  INF, INF,  INF,  8,    9,   0}};//大家可以在去测试其它的邻接矩阵,结果都可以得到最小生成树.//创建KruskalCase对象实KruskalCase kruskalCase = new KruskalCase( vertexs, matrix);//输出构建的kruskalCase.kruskal();kruskalCase.kruskal();}public void kruskal(){int index=0;//用于保存"已有最小生成树”中的每个顶点在最小生成树中的终点int[] ends=new int[edgeNum];//存放选取的边集合EData[] rets=new EData[edgeNum];//获取到图中的边EData[] eData=getEdges();//将所有的边按权值进行排序sortEdges(eData);//遍历edges数组,将边添加到最小生成树中时,判断是准备加入的边否形成了回路,如果没有,就加入rets,否则不能加入for (int i = 0; i < edgeNum; i++) {//获取到第i条边的第一个顶点(起点)int p1=getPosition(eData[i].start);//获取到第i条边的第2个顶点int p2=getPosition(eData[i].end);//获取pl这个顶点在已有最小生成树中的终点int m=getEnd(ends,p1);//获取p2这个顶点在已有最小生成树中的终点int n=getEnd(ends,p2);//是否构成回路if (m!=n){ends[m]=n; //设置m在"已有最小生成树"中的终点rets[index++]=eData[i];}}//打印最小生成树for (int i = 0; i < index; i++) {System.out.println(rets[i]);}}/***获取下标为i的顶点的终点(),用于后面判断两个顶点的终点是否相同* @param ends 数组 就是记录了各个顶点对应的终点是哪个,ends数组是在遍历过程中,逐步形成* @param i 表示传入的顶点对应的下标* @return 返回的就是下标为i的这个顶点对应的终点的下标*/public int getEnd(int[] ends,int i){while (ends[i]!=0){i=ends[i];}return i;}/*** 获取顶点间所有的边(实例)集合* @return*/public EData[] getEdges(){EData[] edges = new EData[edgeNum];int index = 0; //边的下标for (int i = 0; i < this.vertexs.length; i++) {for (int j = i+1; j < this.vertexs.length; j++) {//找到一条边if (this.matrix[i][j]!=INF){//start=this.vertexs[i]  end=this.vertexs[j] weight=this.matrix[i][j]edges[index++]=new EData(this.vertexs[i],this.vertexs[j],this.matrix[i][j]);}}}return edges;}/*** 对边集合进行排序(按照权值weight) 冒泡排序* @param edges*/public void sortEdges(EData[] edges){for (int i = 0; i < edges.length-1; i++) {for (int j = 0; j < edges.length-i-1; j++) {if (edges[j].weight>edges[j+1].weight){EData tempEdge=edges[j];edges[j]=edges[j+1];edges[j+1]=tempEdge;}}}}/*** 获取顶点对应的下标* @param vertex* @return*/public int getPosition(char vertex){for (int i = 0; i < this.vertexs.length; i++) {if (this.vertexs[i]==vertex){return i;}}return -1;}}//该类实例代表一条边
class EData{char start; //边的一端(顶点)char end;   //边的另一端(另一个顶点)int weight; //距离(权值)public EData(char start,char end,int weight){this.start=start;this.end=end;this.weight=weight;}@Overridepublic String toString() {return "EData[<"+start+","+end+">,"+"weight:"+weight+"]";}
}

这篇关于java实现克鲁斯卡尔算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/316057

相关文章

Java NoClassDefFoundError运行时错误分析解决

《JavaNoClassDefFoundError运行时错误分析解决》在Java开发中,NoClassDefFoundError是一种常见的运行时错误,它通常表明Java虚拟机在尝试加载一个类时未能... 目录前言一、问题分析二、报错原因三、解决思路检查类路径配置检查依赖库检查类文件调试类加载器问题四、常见

Java注解之超越Javadoc的元数据利器详解

《Java注解之超越Javadoc的元数据利器详解》本文将深入探讨Java注解的定义、类型、内置注解、自定义注解、保留策略、实际应用场景及最佳实践,无论是初学者还是资深开发者,都能通过本文了解如何利用... 目录什么是注解?注解的类型内置注编程解自定义注解注解的保留策略实际用例最佳实践总结在 Java 编程

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

Java 实用工具类Spring 的 AnnotationUtils详解

《Java实用工具类Spring的AnnotationUtils详解》Spring框架提供了一个强大的注解工具类org.springframework.core.annotation.Annot... 目录前言一、AnnotationUtils 的常用方法二、常见应用场景三、与 JDK 原生注解 API 的

Java controller接口出入参时间序列化转换操作方法(两种)

《Javacontroller接口出入参时间序列化转换操作方法(两种)》:本文主要介绍Javacontroller接口出入参时间序列化转换操作方法,本文给大家列举两种简单方法,感兴趣的朋友一起看... 目录方式一、使用注解方式二、统一配置场景:在controller编写的接口,在前后端交互过程中一般都会涉及

Java中的StringBuilder之如何高效构建字符串

《Java中的StringBuilder之如何高效构建字符串》本文将深入浅出地介绍StringBuilder的使用方法、性能优势以及相关字符串处理技术,结合代码示例帮助读者更好地理解和应用,希望对大家... 目录关键点什么是 StringBuilder?为什么需要 StringBuilder?如何使用 St

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

Java并发编程之如何优雅关闭钩子Shutdown Hook

《Java并发编程之如何优雅关闭钩子ShutdownHook》这篇文章主要为大家详细介绍了Java如何实现优雅关闭钩子ShutdownHook,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起... 目录关闭钩子简介关闭钩子应用场景数据库连接实战演示使用关闭钩子的注意事项开源框架中的关闭钩子机制1.

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句