Golang GMP调度模型:实现高效协程调度和执行

2023-10-20 02:20

本文主要是介绍Golang GMP调度模型:实现高效协程调度和执行,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引言

Go语言(Golang)是一种开源的高性能编程语言,它以其独特的并发模型而闻名。Golang引入了一种称为GMP的调度模型,用于实现协程的高效调度和执行。本文将深入探讨Golang GMP调度模型的概念、用法、适用场景,并通过案例分析来展示其在实际应用中的优势。通过阅读本文,读者将更好地理解Golang的协程调度机制,并能够编写高效的并发程序。

概念

GMP调度模型是Golang并发编程模型的核心之一,它由三个关键组件组成:Goroutine(G)、M(Machine)和P(Processor)。Goroutine是Golang中的轻量级线程,每个协程代表一个并发执行的任务。M代表操作系统线程,负责实际执行Goroutine。P代表处理器,维护一组协程的运行队列。

用法

Golang的调度器是由运行时系统自动管理的,开发者无需手动控制协程的调度和执行。通过关键字go,开发者可以创建协程,并编写相应的逻辑。调度器会根据运行时系统的策略来实现协程的调度和执行。当一个Goroutine被创建时,它会被放入全局运行队列中。当一个M变为可运行状态时,它会从全局运行队列中获取一个可运行的Goroutine,并将其绑定到自己的线程上执行。如此循环,实现了高效的协程调度和执行。

package mainimport "fmt"func main() {go func() {fmt.Println("Hello, World!")}()// 等待协程执行完成// ...
}

场景

Golang的GMP调度模型非常适用于高并发和高吞吐量的场景。它能够自动均衡地分配Goroutine的执行,使得多个线程和处理器能够充分利用资源,提高程序的并发性能。特别在I/O密集型和并行计算的应用中,GMP模型能够充分发挥其优势。

案例

假设我们有一个网络爬虫程序,需要并发地从多个网站上爬取数据。传统的实现方式是使用多线程,但是线程的创建和销毁开销较大,容易造成资源浪费。通过使用Golang的GMP调度模型,我们可以优雅地解决这个问题。

首先,我们创建一个Goroutine来执行爬取网站的任务。这个Goroutine会将获取到的数据发送到一个通道中。我们同时创建多个Goroutine来处理这个通道中的数据。

当一个Goroutine在爬取网站时,如果发生了阻塞(比如等待I/O),调度器会将其从当前线程解绑,并将其放入等待队列中。这时,该线程可以执行其他可运行的Goroutine,以充分利用计算资源。

当一个阻塞的Goroutine变为可运行状态时(比如I/O操作完成),它会重新被放入全局运行队列中,等待被分配给某个可用的M执行。这样,我们可以实现高效的并发爬取,并充分利用系统的资源。

package mainimport ("fmt""net/http""io/ioutil""sync"
)func main() {urls := []string{"http://example.com", "http://example.org", "http://example.net"}var wg sync.WaitGroupfor _, url := range urls {wg.Add(1)go func(u string) {defer wg.Done()resp, err := http.Get(u)if err != nil {fmt.Println("Error:", err)return}defer resp.Body.Close()body, err := ioutil.ReadAll(resp.Body)if err != nil {fmt.Println("Error:", err)return}fmt.Printf("Response from %s: %s\n", u, body)}(url)}wg.Wait()
}

案例一:并发计算

假设我们有一个需要计算大量数值的任务,我们可以使用Golang的GMP调度模型来实现并发计算,提高计算效率。

package mainimport ("fmt""sync"
)func main() {numbers := []int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}var wg sync.WaitGroupfor _, num := range numbers {wg.Add(1)go func(n int) {defer wg.Done()result := n * nfmt.Printf("Square of %d is %d\n", n, result)}(num)}wg.Wait()
}

在上述例子中,我们创建了一个包含10个数值的切片。然后,我们使用sync.WaitGroup来同步并发计算任务的完成。对于每个数值,我们创建一个Goroutine来执行计算操作。每个Goroutine计算完毕后,通过defer wg.Done()来通知sync.WaitGroup任务已完成。最后,通过wg.Wait()来等待所有任务完成。

案例二:并发网络请求

假设我们需要从多个URL中获取数据,我们可以使用Golang的GMP调度模型来实现并发网络请求,提高获取数据的效率。

package mainimport ("fmt""io/ioutil""net/http""sync"
)func main() {urls := []string{"http://example.com", "http://example.org", "http://example.net"}var wg sync.WaitGroupfor _, url := range urls {wg.Add(1)go func(u string) {defer wg.Done()resp, err := http.Get(u)if err != nil {fmt.Printf("Error fetching %s: %v\n", u, err)return}defer resp.Body.Close()body, err := ioutil.ReadAll(resp.Body)if err != nil {fmt.Printf("Error reading response body from %s: %v\n", u, err)return}fmt.Printf("Response from %s: %s\n", u, body)}(url)}wg.Wait()
}

在上述例子中,我们创建了一个包含3个URL的切片。然后,我们使用sync.WaitGroup来同步并发网络请求任务的完成。对于每个URL,我们创建一个Goroutine来执行网络请求操作。每个Goroutine完成请求后,通过defer wg.Done()来通知sync.WaitGroup任务已完成。最后,通过wg.Wait()来等待所有任务完成。

案例三:并发文件处理

假设我们有一个包含多个文件名的切片,我们可以使用Golang的GMP调度模型来并发地处理这些文件,提高文件处理的效率。

package mainimport ("fmt""io/ioutil""sync"
)func main() {files := []string{"file1.txt", "file2.txt", "file3.txt"}var wg sync.WaitGroupfor _, file := range files {wg.Add(1)go func(f string) {defer wg.Done()data, err := ioutil.ReadFile(f)if err != nil {fmt.Printf("Error reading file %s: %v\n", f, err)return}fmt.Printf("Contents of %s:\n%s\n", f, data)}(file)}wg.Wait()
}

在上述例子中,我们创建了一个包含3个文件名的切片。然后,我们使用sync.WaitGroup来同步并发文件处理任务的完成。对于每个文件名,我们创建一个Goroutine来执行文件处理操作。每个Goroutine完成处理后,通过defer wg.Done()来通知sync.WaitGroup任务已完成。最后,通过wg.Wait()来等待所有任务完成。

通过以上三个案例,我们可以看到Golang的GMP调度模型在并发计算、并发网络请求和并发文件处理等场景下的优势。使用Golang的协程和调度器,我们可以编写高效的并发程序。

总结

Golang的GMP调度模型是实现高效协程调度和执行的核心机制。通过合理利用Goroutine、M和P的关系,调度器能够自动均衡地分配协程的执行,提高程序的并发性能。GMP模型适用于高并发和高吞吐量的场景,特别适合于I/O密集型和并行计算的应用。通过本文的介绍,读者可以更好地理解Golang的协程调度机制,并能够编写高效的并发程序。

这篇关于Golang GMP调度模型:实现高效协程调度和执行的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/243978

相关文章

HTML5 getUserMedia API网页录音实现指南示例小结

《HTML5getUserMediaAPI网页录音实现指南示例小结》本教程将指导你如何利用这一API,结合WebAudioAPI,实现网页录音功能,从获取音频流到处理和保存录音,整个过程将逐步... 目录1. html5 getUserMedia API简介1.1 API概念与历史1.2 功能与优势1.3

Java实现删除文件中的指定内容

《Java实现删除文件中的指定内容》在日常开发中,经常需要对文本文件进行批量处理,其中,删除文件中指定内容是最常见的需求之一,下面我们就来看看如何使用java实现删除文件中的指定内容吧... 目录1. 项目背景详细介绍2. 项目需求详细介绍2.1 功能需求2.2 非功能需求3. 相关技术详细介绍3.1 Ja

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

PostgreSQL中MVCC 机制的实现

《PostgreSQL中MVCC机制的实现》本文主要介绍了PostgreSQL中MVCC机制的实现,通过多版本数据存储、快照隔离和事务ID管理实现高并发读写,具有一定的参考价值,感兴趣的可以了解一下... 目录一 MVCC 基本原理python1.1 MVCC 核心概念1.2 与传统锁机制对比二 Postg

SpringBoot整合Flowable实现工作流的详细流程

《SpringBoot整合Flowable实现工作流的详细流程》Flowable是一个使用Java编写的轻量级业务流程引擎,Flowable流程引擎可用于部署BPMN2.0流程定义,创建这些流程定义的... 目录1、流程引擎介绍2、创建项目3、画流程图4、开发接口4.1 Java 类梳理4.2 查看流程图4

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1