百度飞浆ResNet50大模型微调实现十二种猫图像分类

2023-10-12 19:01

本文主要是介绍百度飞浆ResNet50大模型微调实现十二种猫图像分类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

12种猫分类比赛传送门

要求很简单,给train和test集,训练模型实现图像分类。

这里使用的是残差连接模型,这个平台有预训练好的模型,可以直接拿来主义。

训练十几个迭代,每个批次60左右,准确率达到90%以上

一、导入库,解压文件

import os
import zipfile
import random
import json
import cv2
import numpy as np
from PIL import Imageimport matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
import paddle
import paddle.nn as nn
from paddle.io import Dataset,DataLoader
from paddle.nn import \Layer, \Conv2D, Linear, \Embedding, MaxPool2D, \BatchNorm2D, ReLUimport paddle.vision.transforms as transforms
from paddle.vision.models import resnet50
from paddle.metric import Accuracytrain_parameters = {"input_size": [3, 224, 224],                     # 输入图片的shape"class_dim": 12,                                 # 分类数"src_path":"data/data10954/cat_12_train.zip",   # 原始数据集路径"src_test_path":"data/data10954/cat_12_test.zip",   # 原始数据集路径"target_path":"/home/aistudio/data/dataset",     # 要解压的路径 "train_list_path": "./train.txt",                # train_data.txt路径"eval_list_path": "./eval.txt",                  # eval_data.txt路径"label_dict":{},                                 # 标签字典"readme_path": "/home/aistudio/data/readme.json",# readme.json路径"num_epochs":6,                                 # 训练轮数"train_batch_size": 16,                          # 批次的大小"learning_strategy": {                           # 优化函数相关的配置"lr": 0.0005                                  # 超参数学习率} 
}scr_path=train_parameters['src_path']
target_path=train_parameters['target_path']
src_test_path=train_parameters["src_test_path"]
z = zipfile.ZipFile(scr_path, 'r')
z.extractall(path=target_path)
z = zipfile.ZipFile(src_test_path, 'r')
z.extractall(path=target_path)
z.close()
for imgpath in os.listdir(target_path + '/cat_12_train'):src = os.path.join(target_path + '/cat_12_train/', imgpath)img = Image.open(src)if img.mode != 'RGB':img = img.convert('RGB')img.save(src)for imgpath in os.listdir(target_path + '/cat_12_test'):src = os.path.join(target_path + '/cat_12_test/', imgpath)img = Image.open(src)if img.mode != 'RGB':img = img.convert('RGB')img.save(src)

 解压后将所有图像变为RGB图像

二、加载训练集,进行预处理、数据增强、格式变换

transform = transforms.Compose([transforms.Resize(size=224),transforms.ColorJitter(0.2, 0.2, 0.2, 0.2),transforms.RandomHorizontalFlip(),transforms.RandomRotation(15),transforms.RandomResizedCrop(size=224, scale=(0.8, 1.0)),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])x_train,x_eval,y_train=[],[],[]#获取训练图像和标签、测试图像和标签
contents=[]
with open('data/data10954/train_list.txt')as f:contents=f.read().split('\n')for item in contents:if item=='':continuepath='data/dataset/'+item.split('\t')[0]data=np.array(Image.open(path).convert('RGB'))data=np.array(transform(data))x_train.append(data)y_train.append(int(item.split('\t')[-1]))contetns=os.listdir('data/dataset/cat_12_test')
for item in contetns:path='data/dataset/cat_12_test/'+itemdata=np.array(Image.open(path).convert('RGB'))data=np.array(transform(data))x_eval.append(data)

重点是transforms变换的预处理

三、划分训练集和测试集

x_train=np.array(x_train)y_train=np.array(y_train)x_eval=np.array(x_eval)x_train,x_test,y_train,y_test=train_test_split(x_train,y_train,test_size=0.2,random_state=42,stratify=y_train)x_train=paddle.to_tensor(x_train,dtype='float32')
y_train=paddle.to_tensor(y_train,dtype='int64')
x_test=paddle.to_tensor(x_test,dtype='float32')
y_test=paddle.to_tensor(y_test,dtype='int64')
x_eval=paddle.to_tensor(x_eval,dtype='float32')

 这是必要的,可以随时利用测试集查看准确率

四、加载预训练模型,选择损失函数和优化器

learning_rate=0.001
epochs =5  # 迭代轮数
batch_size = 50  # 批次大小
weight_decay=1e-5
num_class=12cnn=resnet50(pretrained=True)
checkpoint=paddle.load('checkpoint.pdparams')for param in cnn.parameters():param.requires_grad=False
cnn.fc = nn.Linear(2048, num_class)
cnn.set_dict(checkpoint['cnn_state_dict'])
criterion=nn.CrossEntropyLoss()
optimizer = paddle.optimizer.Adam(learning_rate=learning_rate, parameters=cnn.fc.parameters(),weight_decay=weight_decay)

第一次训练把加载模型注释掉即可,优化器包含最后一层全连接的参数

五、模型训练 

if x_train.shape[3]==3:x_train=paddle.transpose(x_train,perm=(0,3,1,2))dataset = paddle.io.TensorDataset([x_train, y_train])
data_loader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
for epoch in range(epochs):for batch_data, batch_labels in data_loader:outputs = cnn(batch_data)loss = criterion(outputs, batch_labels)print(epoch)loss.backward()optimizer.step()optimizer.clear_grad()print(f"Epoch [{epoch+1}/{epochs}], Loss: {loss.numpy()[0]}")#保存参数
paddle.save({'cnn_state_dict': cnn.state_dict(),}, 'checkpoint.pdparams')

 使用批处理,这个很重要,不然平台分分钟炸了

六、测试集准确率

num_class=12
batch_size=64
cnn=resnet50(pretrained=True)
checkpoint=paddle.load('checkpoint.pdparams')for param in cnn.parameters():param.requires_grad=False
cnn.fc = nn.Linear(2048, num_class)
cnn.set_dict(checkpoint['cnn_state_dict'])cnn.eval()if x_test.shape[3]==3:x_test=paddle.transpose(x_test,perm=(0,3,1,2))
dataset = paddle.io.TensorDataset([x_test, y_test])
data_loader = DataLoader(dataset, batch_size=batch_size, shuffle=True)with paddle.no_grad():score=0for batch_data, batch_labels in data_loader:predictions = cnn(batch_data)predicted_probabilities = paddle.nn.functional.softmax(predictions, axis=1)predicted_labels = paddle.argmax(predicted_probabilities, axis=1) print(predicted_labels)for i in range(len(predicted_labels)):if predicted_labels[i].numpy()==batch_labels[i]:score+=1print(score/len(y_test))

设置eval模式,使用批处理测试准确率 

这篇关于百度飞浆ResNet50大模型微调实现十二种猫图像分类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/197831

相关文章

Qt中实现多线程导出数据功能的四种方式小结

《Qt中实现多线程导出数据功能的四种方式小结》在以往的项目开发中,在很多地方用到了多线程,本文将记录下在Qt开发中用到的多线程技术实现方法,以导出指定范围的数字到txt文件为例,展示多线程不同的实现方... 目录前言导出文件的示例工具类QThreadQObject的moveToThread方法实现多线程QC

Go语言使用sync.Mutex实现资源加锁

《Go语言使用sync.Mutex实现资源加锁》数据共享是一把双刃剑,Go语言为我们提供了sync.Mutex,一种最基础也是最常用的加锁方式,用于保证在任意时刻只有一个goroutine能访问共享... 目录一、什么是 Mutex二、为什么需要加锁三、实战案例:并发安全的计数器1. 未加锁示例(存在竞态)

基于Redisson实现分布式系统下的接口限流

《基于Redisson实现分布式系统下的接口限流》在高并发场景下,接口限流是保障系统稳定性的重要手段,本文将介绍利用Redisson结合Redis实现分布式环境下的接口限流,具有一定的参考价值,感兴趣... 目录分布式限流的核心挑战基于 Redisson 的分布式限流设计思路实现步骤引入依赖定义限流注解实现

SpringBoot实现虚拟线程的方案

《SpringBoot实现虚拟线程的方案》Java19引入虚拟线程,本文就来介绍一下SpringBoot实现虚拟线程的方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录什么是虚拟线程虚拟线程和普通线程的区别SpringBoot使用虚拟线程配置@Async性能对比H

基于Python实现进阶版PDF合并/拆分工具

《基于Python实现进阶版PDF合并/拆分工具》在数字化时代,PDF文件已成为日常工作和学习中不可或缺的一部分,本文将详细介绍一款简单易用的PDF工具,帮助用户轻松完成PDF文件的合并与拆分操作... 目录工具概述环境准备界面说明合并PDF文件拆分PDF文件高级技巧常见问题完整源代码总结在数字化时代,PD

Python实现Word转PDF全攻略(从入门到实战)

《Python实现Word转PDF全攻略(从入门到实战)》在数字化办公场景中,Word文档的跨平台兼容性始终是个难题,而PDF格式凭借所见即所得的特性,已成为文档分发和归档的标准格式,下面小编就来和大... 目录一、为什么需要python处理Word转PDF?二、主流转换方案对比三、五套实战方案详解方案1:

SpringBoot集成EasyExcel实现百万级别的数据导入导出实践指南

《SpringBoot集成EasyExcel实现百万级别的数据导入导出实践指南》本文将基于开源项目springboot-easyexcel-batch进行解析与扩展,手把手教大家如何在SpringBo... 目录项目结构概览核心依赖百万级导出实战场景核心代码效果百万级导入实战场景监听器和Service(核心

C# async await 异步编程实现机制详解

《C#asyncawait异步编程实现机制详解》async/await是C#5.0引入的语法糖,它基于**状态机(StateMachine)**模式实现,将异步方法转换为编译器生成的状态机类,本... 目录一、async/await 异步编程实现机制1.1 核心概念1.2 编译器转换过程1.3 关键组件解析

基于Python Playwright进行前端性能测试的脚本实现

《基于PythonPlaywright进行前端性能测试的脚本实现》在当今Web应用开发中,性能优化是提升用户体验的关键因素之一,本文将介绍如何使用Playwright构建一个自动化性能测试工具,希望... 目录引言工具概述整体架构核心实现解析1. 浏览器初始化2. 性能数据收集3. 资源分析4. 关键性能指

使用Redis快速实现共享Session登录的详细步骤

《使用Redis快速实现共享Session登录的详细步骤》在Web开发中,Session通常用于存储用户的会话信息,允许用户在多个页面之间保持登录状态,Redis是一个开源的高性能键值数据库,广泛用于... 目录前言实现原理:步骤:使用Redis实现共享Session登录1. 引入Redis依赖2. 配置R