IWR1443毫米波雷达------基于多普勒相偏补偿的速度解模糊/扩展,实测数据验证

本文主要是介绍IWR1443毫米波雷达------基于多普勒相偏补偿的速度解模糊/扩展,实测数据验证,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 一、基于多普勒相偏补偿的解模糊算法核心思想
  • 二、算法步骤
  • 三、理论效果示意图
  • 四、程序编写
  • 五、实测数据结果:
    • 5.1、data1结果:
    • 5.2、data2结果:
  • 六、总结
    • 6.1、多普勒相偏补偿参考:
    • 6.2、致读者:


前言

“速度模糊”现象是指由于雷达测速范围有限,当目标速度|Vr|>|Vmax|时,测量速度Ve!=Vr的现象。
更多细节可以看这篇文章:https://zhuanlan.zhihu.com/p/486798151
本文主要是记录iwr1443毫米波雷达通过实测数据,验证基于多普勒相偏补偿的速度解模糊算法的有效性


一、基于多普勒相偏补偿的解模糊算法核心思想

首先,由于雷达测速和测角度都是基于相位差的,因此当实际速度Vr超过测速范围时,发生“相位模糊”导致了"速度模糊"。下图1所示W2>pi,发生“相位模糊”,实测得到的相位为w1=2*pi-w2。因此,目标实际速度Vr测量速度Ve雷达测速范围Vmax之间满足如下公式1所示:

在这里插入图片描述
公式(1)

在这里插入图片描述
图1:相位模糊示意图

雷达测角度时,需要考虑速度引起的相位差,根据测量速度Ve对目标角度的求解进行修正,这一过程称为“多普勒相偏补偿”。
在这种的情况下,根据可知测量多普勒补偿相位差与实际多普勒补偿相位差的关系如公式2所示:
在这里插入图片描述
公式(2)

如果测量速度Ve !=实际速度Vr,那么根据测量速度Vr进行多普勒相偏补偿的结果就是错误的;如果没有发生速度模糊:Ve=Vr,那么根据测量速度Vr进行多普勒相偏补偿的结果就是正确的。因此此算法的核心思想就是在不知道速度是否发生模糊的情况下,通过比较两个不同的角度谱的峰值大小来求解目标速度,因为如果角度补偿结果是错误的,那么相应的角度谱的峰值就会偏小。

二、算法步骤

说明:当假设速度发生模糊,那么如图1所示,实际相位应该为2kpi-w1,k为非零整数,由于不能区分2pi-w1和4pi-w1,因此此算法只能假设当速度模糊时,k=1或-1,这也就导致了此算法只能将速度范围扩展一倍。

如图2所示,是此算法的步骤:定义set1时,符号翻转的操作,对应着复数中“旋转pi”的操作,对应着公式2,但此时k只能取正负1。
在这里插入图片描述
图2:基于多普勒相偏补偿算法的步骤

`

三、理论效果示意图

图3(a)和图3(b)分别展示了两种情况下的理论结果:
在这里插入图片描述
图3(a):未发生速度模糊
在这里插入图片描述
图3(b):发生速度模糊

四、程序编写

根据图2所示的算法步骤,只需在原有的求解目标角度的基础上修改。程序有三个需要注意的点:
1.index_dop是目标速度在多普勒门中的下标,范围是-64到63(假设一帧中的脉冲数目chirp_num=128),具体细节可以参考官方关于多普勒相偏补偿的讲解。
2.符号翻转对应着复数中的“旋转pi”。
3.比较两个角度谱的峰值的相对大小,所以一定不要在music算法内将角度谱归一化
核心代码块如下:

        snapshot=snapshot';%未经过多普勒相偏补偿的原始数据snapshot1=snapshot;%操作:多普勒相偏补偿,对应set0snapshot2=snapshot;%操作:多普勒相偏补偿+符号翻转,对应set1%分别进行操作snapshot1(5:8,:)=snapshot1(5:8,:)*exp(-1i*pi*(index_dop(n)/128));%多普勒相偏补偿snapshot2(5:8,:)=snapshot2(5:8,:)*exp(-1i*pi*(index_dop(n)/128))*exp(1i*pi);%分别利用空间谱估计算法(FFT或者MUSIC算法)求解角度谱%注意由于要比较两个角度谱的峰值的相对大小,所以一定不要在music算法内将角度谱归一化[azimuth1(n),P1] = Music(snapshot1,chirps_num,1);%P1:set0[azimuth2(n),P2] = Music(snapshot2,chirps_num,1);%P2:set1plot(P1,'b-.');hold  on%叠加,比较set0和set1plot(P2,'r--');xlabel('方位角/度')ylabel('幅度')title('基于多普勒补偿的速度扩展示意图(Vr>V_max)')legend({'set0','set1'})

全部代码和数据放在如下网盘中,可自取:链接:https://pan.baidu.com/s/1fhAVXiAIDKM_nPshWbvJEw?pwd=HUST
提取码:HUST

五、实测数据结果:

5.1、data1结果:

data1.bin文件是人体走动跟踪的数据,因此全程不会发生速度模糊Vr<Vmax,此时理论上如图3(a)所示:set0>set1。
在这里插入图片描述
图4(a):未发生速度模糊
在这里插入图片描述图4(b):未发生速度模糊

5.2、data2结果:

data2.bin文件是向上抛物并下落的数据,因此全程在自由落体时发生速度模糊Vr>Vmax,此时理论上发生速度模糊时如图3(b)所示:set0<set1。当然,此过程中当物体上升过程中,速度没有发生模糊(70帧)。
在这里插入图片描述
图5(a):发生速度模糊
在这里插入图片描述
图5(b):未发生速度模糊

六、总结

6.1、多普勒相偏补偿参考:

关于多普勒相偏补偿,请参考官方SDK中的说明文档“Millimeter Wave (mmw) Demo for XWR14XX”

6.2、致读者:

更多结果和程序说明,都在代码注释中详细说明了。由于第一次写博客,所以文章的排版很差,望理解。由于本人水平有限,所以难免出现错误,请大家赐教。

这篇关于IWR1443毫米波雷达------基于多普勒相偏补偿的速度解模糊/扩展,实测数据验证的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/188492

相关文章

批量导入txt数据到的redis过程

《批量导入txt数据到的redis过程》用户通过将Redis命令逐行写入txt文件,利用管道模式运行客户端,成功执行批量删除以Product*匹配的Key操作,提高了数据清理效率... 目录批量导入txt数据到Redisjs把redis命令按一条 一行写到txt中管道命令运行redis客户端成功了批量删除k

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

MySQL 主从复制部署及验证(示例详解)

《MySQL主从复制部署及验证(示例详解)》本文介绍MySQL主从复制部署步骤及学校管理数据库创建脚本,包含表结构设计、示例数据插入和查询语句,用于验证主从同步功能,感兴趣的朋友一起看看吧... 目录mysql 主从复制部署指南部署步骤1.环境准备2. 主服务器配置3. 创建复制用户4. 获取主服务器状态5

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

Java通过驱动包(jar包)连接MySQL数据库的步骤总结及验证方式

《Java通过驱动包(jar包)连接MySQL数据库的步骤总结及验证方式》本文详细介绍如何使用Java通过JDBC连接MySQL数据库,包括下载驱动、配置Eclipse环境、检测数据库连接等关键步骤,... 目录一、下载驱动包二、放jar包三、检测数据库连接JavaJava 如何使用 JDBC 连接 mys