A*算法解决传教士—野人过河问题

2024-09-03 19:58

本文主要是介绍A*算法解决传教士—野人过河问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

A*算法解决传教士—野人过河问题

算法原理

1、A算法的基本原理分析;
在或图的一般搜索算法中,如果在搜索过程的步骤⑦利用估价函数f(n)=g(n)+h(n)对open表中的节点进行排序,则该搜索算法为A算法。
g(n):从初始节点到n的实际代价
因为n为当前节点,搜索已达到n点,所以g(n)可计算出。
h(n):启发函数,从n到目标节点的最佳路径的估计代价。
因为尚未找到解路径,所以h(n)仅仅是估计值。
对A算法中的g(n)和h(n)做出限制:
g(n) >= g
(n)(g*(n)为S0到n的最小费用)
-h(n) <= h*(n)(h*(n)为n到Sg的实际最小费用)
则算法被称为A*算法。

2、传教士—野人过河问题的知识表示方法分析;
在这个问题中,需要考虑:
1、两岸的传教士人数和野人人数 2、船在左岸还是在右岸
已知:传教士和野人数:N(两者默认相同),船的最大容量:K
定义:M:左岸传教士人数 C:左岸野人人数 B:左岸船个数
可用一个三元组来表示左岸状态,即S=(M, C, B)。
约束条件:M>=0,C>=0,B=1或0
已知左岸状态,右岸的状态为:
右岸传教士人数:M’=N-M
右岸野人人数:C’=N-C
右岸船数:B’=1-B
满足同样的约束条件

3、针对传教士—野人过河问题的A算法详细分析
(1)A
算法求解传教士和野人过河问题,主要实现过程:
①使用状态空间法将问题的求解抽象为状态空间的搜索。
②根据A算法的思想、A算法的具体步骤、设计估价函数的方法,针对传教士–野人过河问题设计出估价函数f(n),给出条件约束函数。
(2)估价函数设计:f(n)=g(n)+M+C-K*B

  • h(n)=M+C-K*B把状态转换后左岸剩余人数作为启发性信息

合理性分析:
本问题中,在满足条件约束的前提下,总是希望能使左岸的人数最少。当左岸有船时,应当使船每次都满负荷运载,即运KB人过河。
然而,在最大运载量为K的情况下,状态转换后左岸的剩余人数不可能小于M+C-K
B,即从节点n到目标节点的最小代价h*(n)不可能小于h(n) ,因此,满足A算法的条件限制h(n)<=h(n)。
(3)本问题中操作是指用船把传教士或野人从河的左岸运到右岸,或者从河的右岸运到左岸,并且每个操作都应该满足以下3个条件:
①船至少有一个人(M或C)操作,离开岸边的M和C的减少数目等于到达岸边的M和C的增加数目。
②每次操作,船上的人数不得超过K个。
③操作应保证不产生非法状态。

设计思路

1、设计状态空间表示方式
可用一个三元组来表示左岸状态,即S=(M, C, B),将所有扩展的节点和原始节点存放在同一列表中。初始状态为(N,N,1),目标状态为(0,0,0),问题的求解转换为在状态空间中,找到一条从状态(N, N, 1)到状态(0, 0, 0)的最优路径。
例:在3传教士3野人问题中,初始状态为(3,3,1),目标状态为(0,0,0)。
当1野人离开左岸到达右岸后,原状态变为p = [(3,2,0),(3,3,1)],p[0]为当前状态,而列表最后一个为初始状态,只要当p[0] = (0,0,0)则完成搜索。
2、节点拓展方法与合法状态判断
(1)节点拓展:通过减少和增加传教士或野人的数量来拓展节点。
当船在左岸(B=1):①减少野人 ②减少传教士 ③减少野人和传教士
当船在右岸(B=0):①增加野人 ②增加传教士 ③增加野人和传教士
(2)合法状态判断
①左岸传教士数量等于总数或左岸传教士为0:C>=0,C<=N
②左岸传教士数量基于0到N之间时: C >=0 , M >= C , M <= N , C <= N , N-M >= N-C
③其他状态为不合法

3、搜索过程
①建立只含有初始节点S的搜索图G,把S放到OPEN表中;
②建立CLOSED表,其初始值为空表;
③若OPEN表是空表,则失败退出;
④选择OPEN表中第一个节点,把它从OPEN表移出并放进CLOSED表中,称此节点为节点n;
⑤若n为目标节点,则有解并成功退出。
⑥沿指针追踪图G中从n到S这条路径得到解(指针在步骤⑦中设置);
⑦扩展n,生成不是n的祖先的那些后继节点的集合M,把M的这些成员作为n的后继节点添入图G中;
对M中子节点进行如下处理:
-对没在G中出现过的(即没在OPEN或CLOSED表中出现过的)M成员设置一个指向n的指针,把M的这些成员加进OPEN表;
-已在OPEN或CLOSED表中的每个M成员,确定是否需要更改指向n的指针方向;
-已在CLOSED表中的每个M成员,确定是否需要更改图G中它的每个后裔节点指向父节点的指针。
⑧按某种方式或按某个试探值,重排OPEN表;
⑨转步骤③。

完整代码

def GJ(this,k):#估价函数计算 h(n) = M + C - K * Breturn this[0] + this[1] - k * this[2]def creat(array,M,C,B,N):#判断生成节点是否符合规则、判断是否重复P = array[:]if M == N :#左岸传教士数量等于总数if  C >=0  and  C <= N :P.insert(0,[M,C,1-B])for i in open:if P[0] == i[0]:return Falsefor i in closed:if P[0] == i[0]:return Falseopen.append(P)return Trueelse:return Falseelif M > 0 :#左岸传教士数量基于0到N之间时if  C >=0 and M >= C and M <= N and C <= N and N-M >= N-C:P.insert(0,[M,C,1-B])for i in open:if P[0] == i[0]:return Falsefor i in closed:if P[0] == i[0]:return Falseopen.append(P)return Trueelse:return Falseelif M == 0:#左岸传教士为0if  C >= 0 and C <= N:P.insert(0, [M, C, 1 - B])for i in open:if P[0] == i[0]:return Falsefor i in closed:if P[0] == i[0]:return Falseopen.append(P)return Trueelse:return Falseelse:return Falseif  __name__ == '__main__':N = int(input("传教士和野人的人数(默认相同):"))K =int(input("船的最大容量:"))open = []  #创建open表closed = [] #创建closed表sample = [N,N,1] #初始状态goal = [0,0,0]#目标状态open.append([sample])creatpoint = searchpoint = 0while(1):if sample == goal:print("初始状态为目标状态!")breakif len(open) == 0:print("未搜索到解!")breakelse:this = open.pop(0)closed.append(this)if this[0] == goal:print("搜索成功!")print('共生成节点数:{},共搜索节点数:{}'.format(creatpoint,searchpoint + 1))print('过河方案如下:')print('      [M, C, B]')for i in this[::-1]:print('---->',i)exit()#扩展节点searchpoint += 1if this[0][2] == 1 :#船在左岸时for i in range(1,K+1):#只if creat(this,this[0][0]-i,this[0][1],this[0][2],N):creatpoint += 1for i in range(1,K+1):if creat(this,this[0][0],this[0][1]-i,this[0][2],N):creatpoint += 1for i in range(1,K):for r in range(1,K-i+1):if creat(this,this[0][0] - i,this[0][1] - r, this[0][2],N):creatpoint += 1else:#船在右岸时for i in range(1,K+1):if creat(this,this[0][0]+i,this[0][1],this[0][2],N):creatpoint += 1for i in range(1,K+1):if creat(this,this[0][0],this[0][1]+ i,this[0][2],N):creatpoint += 1for i in range(1,K):for r in range(1,K-i+1):if creat(this,this[0][0] + i,this[0][1] + r, this[0][2],N):creatpoint += 1#计算估计函数h(n) = M + C - K * B 重排open表for x in range(0,len(open)-1):m = xfor y in range(x+1,len(open)):if  GJ(open[x][0],K) >  GJ(open[y][0],K):m = yif m != x:open[x],open[m] = open[m],open[x]

运行结果

参数设置1:N = 3,K =2
初始状态:(3,3,1),目标状态:(0,0,0)
实验结果:
在这里插入图片描述
参数设置2:N = 5,K =3
初始状态:(5,5,1),目标状态:(0,0,0)
实验结果:
在这里插入图片描述
参数设置3:N = 10,K =4
初始状态:(10,10,1),目标状态:(0,0,0)
实验结果:
在这里插入图片描述

这篇关于A*算法解决传教士—野人过河问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1133903

相关文章

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

Redis出现中文乱码的问题及解决

《Redis出现中文乱码的问题及解决》:本文主要介绍Redis出现中文乱码的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 问题的产生2China编程. 问题的解决redihttp://www.chinasem.cns数据进制问题的解决中文乱码问题解决总结

全面解析MySQL索引长度限制问题与解决方案

《全面解析MySQL索引长度限制问题与解决方案》MySQL对索引长度设限是为了保持高效的数据检索性能,这个限制不是MySQL的缺陷,而是数据库设计中的权衡结果,下面我们就来看看如何解决这一问题吧... 目录引言:为什么会有索引键长度问题?一、问题根源深度解析mysql索引长度限制原理实际场景示例二、五大解决

Springboot如何正确使用AOP问题

《Springboot如何正确使用AOP问题》:本文主要介绍Springboot如何正确使用AOP问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录​一、AOP概念二、切点表达式​execution表达式案例三、AOP通知四、springboot中使用AOP导出

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到

解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题

《解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题》:本文主要介绍解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4... 目录未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘打开pom.XM

XML重复查询一条Sql语句的解决方法

《XML重复查询一条Sql语句的解决方法》文章分析了XML重复查询与日志失效问题,指出因DTO缺少@Data注解导致日志无法格式化、空指针风险及参数穿透,进而引发性能灾难,解决方案为在Controll... 目录一、核心问题:从SQL重复执行到日志失效二、根因剖析:DTO断裂引发的级联故障三、解决方案:修复

IDEA Maven提示:未解析的依赖项的问题及解决

《IDEAMaven提示:未解析的依赖项的问题及解决》:本文主要介绍IDEAMaven提示:未解析的依赖项的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录IDEA Maven提示:未解析的依编程赖项例如总结IDEA Maven提示:未解析的依赖项例如