Pytorch:Tensor的高阶操作【where(按条件取元素)、gather(查表取元素)、scatter_(查表取元素)】【可并行计算,提高速度】

本文主要是介绍Pytorch:Tensor的高阶操作【where(按条件取元素)、gather(查表取元素)、scatter_(查表取元素)】【可并行计算,提高速度】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、where:逐个元素按条件选取【并行计算,速度快】

torch.where(condition,x,y) #condition必须是tensor类型

在这里插入图片描述
condition的维度和x,y一致,用1和0分别表示该位置的取值

import torchcond = torch.tensor([[0.6, 0.7],[0.3, 0.6]])a = torch.tensor([[1., 1.],[1., 1.]])b = torch.tensor([[0., 0.],[0., 0.]])result = torch.where(cond > 0.5, a, b)  # 此时cond只有0和1的值print('result = \n', result)

打印结果:

result = 
tensor([[1., 1.],[0., 1.]])Process finished with exit code 0

二、gather:相当于查表取值操作

torch.gather(input, dim, index, out=None)

相当于查表取值操作

import torchprob = torch.randn(4, 6)
print("prob = \n", prob)prob_topk = prob.topk(dim=1, k=3)  # prob在维度1中前三个最大的数,一共有4行,返回值和对应的下标
print("\nprob_topk = \n", prob_topk)topk_idx = prob_topk[1]
print("\ntopk_idx: ", topk_idx)temp = torch.arange(6) + 100  # 举个例子,这里的列表表示为: 0对应于100,1对应于101,以此类推,根据实际应用修改
label = temp.expand(4, 6)
print('\nlabel = ', label)result = torch.gather(label, dim=1, index=topk_idx.long())  # lable相当于one-hot编码,index表示索引
# 换而言是是y与x的函数映射关系,index表示x
print("\nresult:", result)

打印结果:

prob = 
tensor([[-0.4978,  1.4266, -0.1138,  0.2140, -1.2865, -0.0214],[ 0.1554, -0.0286,  1.3697,  0.3916,  1.2014, -0.3400],[ 0.3241, -1.2284,  0.6961,  2.1932,  0.4673,  0.3504],[ 1.7158,  0.3352, -0.1968,  0.3934,  0.0186,  0.5031]])prob_topk = torch.return_types.topk(
values=tensor([[ 1.4266,  0.2140, -0.0214],[ 1.3697,  1.2014,  0.3916],[ 2.1932,  0.6961,  0.4673],[ 1.7158,  0.5031,  0.3934]]),
indices=tensor([[1, 3, 5],[2, 4, 3],[3, 2, 4],[0, 5, 3]]))topk_idx:  tensor([[1, 3, 5],[2, 4, 3],[3, 2, 4],[0, 5, 3]])label =  tensor([[100, 101, 102, 103, 104, 105],[100, 101, 102, 103, 104, 105],[100, 101, 102, 103, 104, 105],[100, 101, 102, 103, 104, 105]])result: tensor([[101, 103, 105],[102, 104, 103],[103, 102, 104],[100, 105, 103]])Process finished with exit code 0

三、scatter_()

scatter_(input, dim, index, src):将src中数据根据index中的索引按照dim的方向填进input。可以理解成放置元素或者修改元素

  • dim:沿着哪个维度进行索引
  • index:用来 scatter 的元素索引
  • src:用来 scatter 的源元素,可以是一个标量或一个张量
x = torch.rand(2, 5)#tensor([[0.1940, 0.3340, 0.8184, 0.4269, 0.5945],
#        [0.2078, 0.5978, 0.0074, 0.0943, 0.0266]])torch.zeros(3, 5).scatter_(0, torch.tensor([[0, 1, 2, 0, 0], [2, 0, 0, 1, 2]]), x)#tensor([[0.1940, 0.5978, 0.0074, 0.4269, 0.5945],
#        [0.0000, 0.3340, 0.0000, 0.0943, 0.0000],
#        [0.2078, 0.0000, 0.8184, 0.0000, 0.0266]])

解释:

数据源头是x,x有10个值,现在把这10个值撒到[3, 5]的矩阵中,那么每个值都要有一个新的位置索引,这个新的索引由index指定。

首先,有10个坑位:
在这里插入图片描述
然后把index写进去,dim=0,表示index代表第0维;
在这里插入图片描述
最后,按照自然顺序补充第二维索引
在这里插入图片描述
以第一行22为例,表示把x中[0, 2]的数据【0.8184】,路由到目标矩阵的[2, 2]位置。




参考资料:
torch.scatter
torch.scatter()

这篇关于Pytorch:Tensor的高阶操作【where(按条件取元素)、gather(查表取元素)、scatter_(查表取元素)】【可并行计算,提高速度】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128713

相关文章

SQL中JOIN操作的条件使用总结与实践

《SQL中JOIN操作的条件使用总结与实践》在SQL查询中,JOIN操作是多表关联的核心工具,本文将从原理,场景和最佳实践三个方面总结JOIN条件的使用规则,希望可以帮助开发者精准控制查询逻辑... 目录一、ON与WHERE的本质区别二、场景化条件使用规则三、最佳实践建议1.优先使用ON条件2.WHERE用

Linux链表操作方式

《Linux链表操作方式》:本文主要介绍Linux链表操作方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、链表基础概念与内核链表优势二、内核链表结构与宏解析三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势六、典型应用场景七、调试技巧与

Java Multimap实现类与操作的具体示例

《JavaMultimap实现类与操作的具体示例》Multimap出现在Google的Guava库中,它为Java提供了更加灵活的集合操作,:本文主要介绍JavaMultimap实现类与操作的... 目录一、Multimap 概述Multimap 主要特点:二、Multimap 实现类1. ListMult

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

Python使用Code2flow将代码转化为流程图的操作教程

《Python使用Code2flow将代码转化为流程图的操作教程》Code2flow是一款开源工具,能够将代码自动转换为流程图,该工具对于代码审查、调试和理解大型代码库非常有用,在这篇博客中,我们将深... 目录引言1nVflRA、为什么选择 Code2flow?2、安装 Code2flow3、基本功能演示

Pytorch介绍与安装过程

《Pytorch介绍与安装过程》PyTorch因其直观的设计、卓越的灵活性以及强大的动态计算图功能,迅速在学术界和工业界获得了广泛认可,成为当前深度学习研究和开发的主流工具之一,本文给大家介绍Pyto... 目录1、Pytorch介绍1.1、核心理念1.2、核心组件与功能1.3、适用场景与优势总结1.4、优

conda安装GPU版pytorch默认却是cpu版本

《conda安装GPU版pytorch默认却是cpu版本》本文主要介绍了遇到Conda安装PyTorchGPU版本却默认安装CPU的问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的... 目录一、问题描述二、网上解决方案罗列【此节为反面方案罗列!!!】三、发现的根本原因[独家]3.1 p

Python中OpenCV与Matplotlib的图像操作入门指南

《Python中OpenCV与Matplotlib的图像操作入门指南》:本文主要介绍Python中OpenCV与Matplotlib的图像操作指南,本文通过实例代码给大家介绍的非常详细,对大家的学... 目录一、环境准备二、图像的基本操作1. 图像读取、显示与保存 使用OpenCV操作2. 像素级操作3.

Java使用MethodHandle来替代反射,提高性能问题

《Java使用MethodHandle来替代反射,提高性能问题》:本文主要介绍Java使用MethodHandle来替代反射,提高性能问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录一、认识MethodHandle1、简介2、使用方式3、与反射的区别二、示例1、基本使用2、(重要)

python操作redis基础

《python操作redis基础》Redis(RemoteDictionaryServer)是一个开源的、基于内存的键值对(Key-Value)存储系统,它通常用作数据库、缓存和消息代理,这篇文章... 目录1. Redis 简介2. 前提条件3. 安装 python Redis 客户端库4. 连接到 Re