经典大语言模型解读(2):生成式预训练的先锋GPT-1

2024-09-01 22:44

本文主要是介绍经典大语言模型解读(2):生成式预训练的先锋GPT-1,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

论文地址:Improving Language Understanding by Generative Pre-Training

概述

现实世界中包含了大量的文本语料数据,然而,绝大多数语料都是无标签的。

为了充分利用这些无标签语料库,GPT1.0提出直接利用这些未标记的语料来进行生成式预训练,然后对每个特定任务进行判别式微调(在标注数据上),从而显著提升在这些任务上的性能。

文中涉及的主要NLP任务包括:

  • Textual Entailment:文本蕴含,即给定一个前提文本(premise),根据这个前提文本去推断假说文本(hypothesis)与前提文本之间的关系,关系包括蕴含和矛盾两种。蕴含关系指能从前提文本推断出假说文本,而矛盾关系则指前提文本与假锁文本相矛盾。

  • Question Answer:理解用户提出的问题并从文本或知识库中找到准确的答案。

  • Semantic Similarity Assessment:计算文本之间的相似度。

  • Document Classification:文本分类任务。

下面将对GPT-1的框架进行详细的介绍。

GPT框架

GPT-1遵循了Transformer架构,但模型仅基于Transformer的解码器构建

模型的训练流程分为两个阶段:预训练和微调。

无监督预训练

给定无监督token语料库 U = { u 1 , … , u n } \mathcal{U}=\left\{u_1, \ldots, u_n\right\} U={u1,,un},模型使用标准的语言建模目标来最大化如下似然函数:
L 1 ( U ) = ∑ i log ⁡ P ( u i ∣ u i − k , … , u i − 1 ; Θ ) L_1(\mathcal{U})=\sum_i \log P\left(u_i \mid u_{i-k}, \ldots, u_{i-1} ; \Theta\right) L1(U)=ilogP(uiuik,,ui1;Θ)

其中 k k k表示上下文窗口大小,条件概率 P P P通过具有参数 Θ \Theta Θ的神经网络来建模。

想了解最大似然估计的可以参考这篇文章:一文搞懂极大似然估计

在本文中,神经网络采用的是多层Transformer编码器,该模型对输入的上下文词馈送到神经网络中,然后通过线性层生成目标词的输出分布:
h 0 = U W e + W p h l = transformer_block ⁡ ( h l − 1 ) ∀ i ∈ [ 1 , n ] P ( u ) = softmax ⁡ ( h n W e T ) \begin{aligned} h_0 & =U W_e+W_p \\ h_l & =\operatorname{transformer\_ block}\left(h_{l-1}\right) \forall i \in[1, n] \\ P(u) & =\operatorname{softmax}\left(h_n W_e^T\right) \end{aligned} h0hlP(u)=UWe+Wp=transformer_block(hl1)i[1,n]=softmax(hnWeT)

其中 U = ( u − k , … , u − 1 ) U=\left(u_{-k}, \ldots, u_{-1}\right) U=(uk,,u1)表示词的上下文向量, n n n是层数, W e W_e We是词嵌入矩阵, W p W_p Wp是位置嵌入矩阵,两者都是可学习的。

有监督微调

在完成预训练后,GPT-1根据有监督的目标任务对预训练模型的参数进行调整。

假设存在带标签的数据集 C \mathcal{C} C,其中每个实例由一个输入词序列 ( x 1 , … , x m ) (x^1, \ldots, x^m) (x1,,xm)和相应的标签 y y y组成。将输入传入预训练模型来获取输入表示 h l m h_l^m hlm,然后将其输入一个额外的线性输出层预测 y y y W y W_y Wy表示该层的可学习参数:
P ( y ∣ x 1 , … , x m ) = softmax ⁡ ( h l m W y ) P\left(y \mid x^1, \ldots, x^m\right)=\operatorname{softmax}\left(h_l^m W_y\right) P(yx1,,xm)=softmax(hlmWy)

在学习的过程中需要最大化如下目标:
L 2 ( C ) = ∑ ( x , y ) log ⁡ P ( y ∣ x 1 , … , x m ) L_2(\mathcal{C})=\sum_{(x, y)} \log P\left(y \mid x^1, \ldots, x^m\right) L2(C)=(x,y)logP(yx1,,xm)

值得注意的是,作者发现将语言建模作为微调的辅助目标有助于学习,因为这可以改善有监督模型的泛化能力和加速收敛。于是,可以得到如下的优化目标:
L 3 ( C ) = L 2 ( C ) + λ ∗ L 1 ( C ) L_3(\mathcal{C})=L_2(\mathcal{C})+\lambda * L_1(\mathcal{C}) L3(C)=L2(C)+λL1(C)

其中 λ \lambda λ为权重。

可以看出,在微调的过程中,唯一需要学习的参数为 W y W_y Wy,这极大地降低了模型的训练成本,同时也能获取到足够好的效果。

特定任务的输入转换

由于NLP任务的广泛性,各类任务的输入差异显著。像文本分类之类的任务可以像上面描述的那样对模型进行微调,而对于像问答和文本蕴含之类的任务,则需要对输入进行修改,才能适配预训练模型进行有效微调。

下图中对GPT-1中的输入转换提供了一个可视化说明。所有转换都包括添加随机初始化的开始和结束标记 ( < s > , < e > ) (<s>,<e>) (<s>,<e>)

Input Transformation

Textual entailment

对于蕴含任务,用分隔符将前提和假设连接起来,中间用分隔符$($)$标记。

Similarity

对于相似性任务,由于两个句子没有固有的顺序,因此需要修改输入序列以包含两种可能的句子顺序(句子之间同样包含分隔符)。两个拼接的序列都独立输入到预训练模型中获取序列表示,之后进行相加后输入被馈送到线性输出层。

Question Answering and Commonsense Reasoning

对于知识问答和因果推理,输入中包含一个上下文文档 z z z、一个问题 q q q和一组可能的答案 { a k } \{a_k\} {ak}。GPT-1将将文档上下文和问题与每个可能的答案连接起来,并在其间添加分隔符,即$[z;q;$;a_k]$。每个凭借的序列同样都利用模型进行独立处理,然后通过Softmax层进行归一化,以产生可能答案的输出分布。

结语

以上便是本文的全部内容,若是觉得不错可以支持一下博主,你们的支持是博主更新的不竭动力。若是有任何问题也敬请批评指正。

这篇关于经典大语言模型解读(2):生成式预训练的先锋GPT-1的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1128261

相关文章

GO语言短变量声明的实现示例

《GO语言短变量声明的实现示例》在Go语言中,短变量声明是一种简洁的变量声明方式,使用:=运算符,可以自动推断变量类型,下面就来具体介绍一下如何使用,感兴趣的可以了解一下... 目录基本语法功能特点与var的区别适用场景注意事项基本语法variableName := value功能特点1、自动类型推

GO语言中函数命名返回值的使用

《GO语言中函数命名返回值的使用》在Go语言中,函数可以为其返回值指定名称,这被称为命名返回值或命名返回参数,这种特性可以使代码更清晰,特别是在返回多个值时,感兴趣的可以了解一下... 目录基本语法函数命名返回特点代码示例命名特点基本语法func functionName(parameters) (nam

Go语言连接MySQL数据库执行基本的增删改查

《Go语言连接MySQL数据库执行基本的增删改查》在后端开发中,MySQL是最常用的关系型数据库之一,本文主要为大家详细介绍了如何使用Go连接MySQL数据库并执行基本的增删改查吧... 目录Go语言连接mysql数据库准备工作安装 MySQL 驱动代码实现运行结果注意事项Go语言执行基本的增删改查准备工作

Go语言使用Gin处理路由参数和查询参数

《Go语言使用Gin处理路由参数和查询参数》在WebAPI开发中,处理路由参数(PathParameter)和查询参数(QueryParameter)是非常常见的需求,下面我们就来看看Go语言... 目录一、路由参数 vs 查询参数二、Gin 获取路由参数和查询参数三、示例代码四、运行与测试1. 测试编程路

Go语言使用net/http构建一个RESTful API的示例代码

《Go语言使用net/http构建一个RESTfulAPI的示例代码》Go的标准库net/http提供了构建Web服务所需的强大功能,虽然众多第三方框架(如Gin、Echo)已经封装了很多功能,但... 目录引言一、什么是 RESTful API?二、实战目标:用户信息管理 API三、代码实现1. 用户数据

Go语言网络故障诊断与调试技巧

《Go语言网络故障诊断与调试技巧》在分布式系统和微服务架构的浪潮中,网络编程成为系统性能和可靠性的核心支柱,从高并发的API服务到实时通信应用,网络的稳定性直接影响用户体验,本文面向熟悉Go基本语法和... 目录1. 引言2. Go 语言网络编程的优势与特色2.1 简洁高效的标准库2.2 强大的并发模型2.

Go语言使用sync.Mutex实现资源加锁

《Go语言使用sync.Mutex实现资源加锁》数据共享是一把双刃剑,Go语言为我们提供了sync.Mutex,一种最基础也是最常用的加锁方式,用于保证在任意时刻只有一个goroutine能访问共享... 目录一、什么是 Mutex二、为什么需要加锁三、实战案例:并发安全的计数器1. 未加锁示例(存在竞态)

C语言自定义类型之联合和枚举解读

《C语言自定义类型之联合和枚举解读》联合体共享内存,大小由最大成员决定,遵循对齐规则;枚举类型列举可能值,提升可读性和类型安全性,两者在C语言中用于优化内存和程序效率... 目录一、联合体1.1 联合体类型的声明1.2 联合体的特点1.2.1 特点11.2.2 特点21.2.3 特点31.3 联合体的大小1

Python标准库datetime模块日期和时间数据类型解读

《Python标准库datetime模块日期和时间数据类型解读》文章介绍Python中datetime模块的date、time、datetime类,用于处理日期、时间及日期时间结合体,通过属性获取时间... 目录Datetime常用类日期date类型使用时间 time 类型使用日期和时间的结合体–日期时间(

Go语言使用select监听多个channel的示例详解

《Go语言使用select监听多个channel的示例详解》本文将聚焦Go并发中的一个强力工具,select,这篇文章将通过实际案例学习如何优雅地监听多个Channel,实现多任务处理、超时控制和非阻... 目录一、前言:为什么要使用select二、实战目标三、案例代码:监听两个任务结果和超时四、运行示例五