Spark MLlib系列(一):入门介绍

2024-08-26 17:32
文章标签 入门 介绍 系列 spark mllib

本文主要是介绍Spark MLlib系列(一):入门介绍,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章转自:http://blog.csdn.net/shifenglov/article/details/43762705

前言

最新的情况是国内BAT已经都上了spark,而且spark在hadoop上的应用,大有为大象插上翅膀的效果。个人估计在未来两到三年,spark大有代替hadoop的mapreduce的趋势。应该说spark的在使用上面的经济成本,性能优势,一站式解决能力,一定会使其大放异彩。
因为个人对spark很感兴趣,加上项目中需要使用它解决一些机器学习的问题,在网上搜集资料时发现,spark machine learning这块的资料确实太缺少了,所以决定写一spark machine learning的一系列博客(只涉及机器学习部分)。
目前考虑是,这个系列,先讲一些入门的知识,然后是一些真正的实战应用,可能涉及到推荐,聚类,分类等问题,理论涉及不会太多,分享一些接地气的干货,让大家能够真正感受到spark machine learning的魅力。

为什么使用MLlib
    
     MLlib  构建在apache spark之上,一个专门针对大量数据处理的 通用的、快速的引擎
  • Speed.Spark has an advanced DAG execution engine that supports cyclic data flow and in-memory computing. Run programs up to 100x faster than Hadoop MapReduce in memory, or 10x faster on disk.
  • Ease of Use .Write applications quickly in Java, Scala or Python.
  • Generality.Combine SQL, streaming, and complex analytics.
  • Runs Everywhere.Spark runs on Hadoop, Mesos, standalone, or in the cloud. It can access diverse data sources including HDFS, Cassandra, HBase, S3.

Logistic regression in Hadoop and Spark

概述

MLlib 是spark的可以扩展的机器学习库,由以下部分组成:通用的学习算法和工具类,包括分类,回归,聚类,协同过滤,降维,当然也包括调优的部分

  • Data types  
  • Basic statistics  (基本统计)
    • summary statistics 概括统计
    • correlations 相关性
    • stratified sampling 分层取样
    • hypothesis testing 假设检验
    • random data generation 随机数生成
  • Classification and regression   (分类一般针对离散型数据而言的,回归是针对连续型数据的。本质上是一样的)
    • linear models (SVMs, logistic regression, linear regression) 线性模型(支持向量机,逻辑回归,线性回归)
    • naive Bayes 贝叶斯算法
    • decision trees  决策树
    • ensembles of trees (Random Forests and Gradient-Boosted Trees) 多种树(随机森林和梯度增强树)
  • Collaborative filtering   协同过滤
    • alternating least squares (ALS)  (交替最小二乘法(ALS) )
  • Clustering  聚类
    • k-means k均值算法
  • Dimensionality reduction   (降维)
    • singular value decomposition (SVD)  奇异值分解
    • principal component analysis (PCA) 主成分分析
  • Feature extraction and transformation 特征提取和转化
  • Optimization (developer) 优化部分
    • stochastic gradient descent 随机梯度下降
    • limited-memory BFGS (L-BFGS) 短时记忆的BFGS (拟牛顿法中的一种,解决非线性问题)

MLlib当前在非常活跃的开发情况下,所以那些被标记成 Experimental/DeveloperApi 在未来的发布种可能会被修改

依赖

MLlib使用了线性代数包 Breeze, 它依赖于netlib-java和jblas。netlib-java 和 jblas 需要依赖native Fortran routines。所以你需要安装gfortran runtime library (安装方法在这个链接中),如果你的集群的节点中没有安装native Fortran routines。MLlib 会抛出一个link error,如果没有安装native Fortran routines。

如果你需要使用spark的python开发,你需要 NumPy version 1.4或以上版本.

当前最近版本1.2

个人认为当前1.2版本的最大的改进应该是发布了称为spark.ml的机器学习工具包,支持了pipeline的学习模式,即多个算法可以用不同参数以流水线的形式运行。在工业界的机器学习应用部署过程中,pipeline的工作模式是很常见的。新的ML工具包使用Spark的SchemaRDD来表示机器学习的数据集合,提供了Spark SQL直接访问的接口。此外,在机器学习的算法方面,增加了两个基于树的方法,随机森林和梯度增强树。还有貌似性能上有优化,看过一篇DataBricks的ppt,据说1.2版本的算法在性能上比1.1版本平均快了3倍


参考资料
 Machine Learning Library (MLlib) Programming Guide  http://spark.apache.org/docs/latest/mllib-guide.html
Spark ML Programming Guide  http://spark.apache.org/docs/latest/ml-guide.html

这篇关于Spark MLlib系列(一):入门介绍的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1109216

相关文章

5 种使用Python自动化处理PDF的实用方法介绍

《5种使用Python自动化处理PDF的实用方法介绍》自动化处理PDF文件已成为减少重复工作、提升工作效率的重要手段,本文将介绍五种实用方法,从内置工具到专业库,帮助你在Python中实现PDF任务... 目录使用内置库(os、subprocess)调用外部工具使用 PyPDF2 进行基本 PDF 操作使用

从入门到精通详解Python虚拟环境完全指南

《从入门到精通详解Python虚拟环境完全指南》Python虚拟环境是一个独立的Python运行环境,它允许你为不同的项目创建隔离的Python环境,下面小编就来和大家详细介绍一下吧... 目录什么是python虚拟环境一、使用venv创建和管理虚拟环境1.1 创建虚拟环境1.2 激活虚拟环境1.3 验证虚

Java中HashMap的用法详细介绍

《Java中HashMap的用法详细介绍》JavaHashMap是一种高效的数据结构,用于存储键值对,它是基于哈希表实现的,提供快速的插入、删除和查找操作,:本文主要介绍Java中HashMap... 目录一.HashMap1.基本概念2.底层数据结构:3.HashCode和equals方法为什么重写Has

Springboot项目构建时各种依赖详细介绍与依赖关系说明详解

《Springboot项目构建时各种依赖详细介绍与依赖关系说明详解》SpringBoot通过spring-boot-dependencies统一依赖版本管理,spring-boot-starter-w... 目录一、spring-boot-dependencies1.简介2. 内容概览3.核心内容结构4.

Java List 使用举例(从入门到精通)

《JavaList使用举例(从入门到精通)》本文系统讲解JavaList,涵盖基础概念、核心特性、常用实现(如ArrayList、LinkedList)及性能对比,介绍创建、操作、遍历方法,结合实... 目录一、List 基础概念1.1 什么是 List?1.2 List 的核心特性1.3 List 家族成

c++日志库log4cplus快速入门小结

《c++日志库log4cplus快速入门小结》文章浏览阅读1.1w次,点赞9次,收藏44次。本文介绍Log4cplus,一种适用于C++的线程安全日志记录API,提供灵活的日志管理和配置控制。文章涵盖... 目录简介日志等级配置文件使用关于初始化使用示例总结参考资料简介log4j 用于Java,log4c

史上最全MybatisPlus从入门到精通

《史上最全MybatisPlus从入门到精通》MyBatis-Plus是MyBatis增强工具,简化开发并提升效率,支持自动映射表名/字段与实体类,提供条件构造器、多种查询方式(等值/范围/模糊/分页... 目录1.简介2.基础篇2.1.通用mapper接口操作2.2.通用service接口操作3.进阶篇3

Python自定义异常的全面指南(入门到实践)

《Python自定义异常的全面指南(入门到实践)》想象你正在开发一个银行系统,用户转账时余额不足,如果直接抛出ValueError,调用方很难区分是金额格式错误还是余额不足,这正是Python自定义异... 目录引言:为什么需要自定义异常一、异常基础:先搞懂python的异常体系1.1 异常是什么?1.2

Python实现Word转PDF全攻略(从入门到实战)

《Python实现Word转PDF全攻略(从入门到实战)》在数字化办公场景中,Word文档的跨平台兼容性始终是个难题,而PDF格式凭借所见即所得的特性,已成为文档分发和归档的标准格式,下面小编就来和大... 目录一、为什么需要python处理Word转PDF?二、主流转换方案对比三、五套实战方案详解方案1:

setsid 命令工作原理和使用案例介绍

《setsid命令工作原理和使用案例介绍》setsid命令在Linux中创建独立会话,使进程脱离终端运行,适用于守护进程和后台任务,通过重定向输出和确保权限,可有效管理长时间运行的进程,本文给大家介... 目录setsid 命令介绍和使用案例基本介绍基本语法主要特点命令参数使用案例1. 在后台运行命令2.