Onnx使用预训练的 ResNet18 模型对输入图像进行分类,并将分类结果显示在图像上

本文主要是介绍Onnx使用预训练的 ResNet18 模型对输入图像进行分类,并将分类结果显示在图像上,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、整体功能概述

二、函数分析

2.1 resnet() 函数:

2.2 pre_process(img_path) 函数:

2.3 loadOnnx(img_path) 函数:

三、代码执行流程


一、整体功能概述


这段代码实现了一个图像分类系统,使用预训练的 ResNet18 模型对输入图像进行分类,并将分类结果显示在图像上。它包括以下主要步骤:
读取一个包含类别名称和对应编号的文本文件,并将其存储在字典中。
定义了几个函数,包括模型导出函数 resnet()、图像预处理函数 pre_process() 和加载 ONNX 模型进行分类的函数 loadOnnx()。
在主程序中,指定输入图像路径,调用 loadOnnx() 函数对图像进行分类并显示结果。


二、函数分析


2.1 resnet() 函数:


使用 torchvision 中的预训练 ResNet18 模型,并设置为评估模式。
生成一个随机输入张量 x,并将模型导出为 ONNX 格式,保存为 models/resnet18.onnx 文件。

def resnet():model=models.resnet18(weights=ResNet18_Weights.IMAGENET1K_V1)model.eval()x=torch.randn(1,3,224,224)torch.onnx.export(model,x,'models/resnet18.onnx',input_names=['input'],output_names=['output'])


2.2 pre_process(img_path) 函数:


读取输入图像 img_path。
调整图像大小为 224x224。
将图像颜色通道从 BGR 转换为 RGB。
对图像像素值进行归一化处理。
交换图像维度顺序,并增加一个维度。
返回预处理后的图像张量。

def pre_process(img_path):#h w c--->224,224,3#归一化#换轴#增加维度img=cv2.imread(img_path)scale_image=cv2.resize(img,dsize=(224,224))rgb_img=cv2.cvtColor(scale_image,cv2.COLOR_BGR2RGB)rgb_img=rgb_img/255rgb_img=np.transpose(rgb_img,(2,0,1))rgb_img=np.expand_dims(rgb_img,0).astype(np.float32)return rgb_img


2.3 loadOnnx(img_path) 函数:


创建一个 ONNX 推理会话,加载预导出的 ResNet18 ONNX 模型。

调用 pre_process() 函数对输入图像进行预处理。
准备输入数据并进行推理。
获取推理结果中概率最大的类别编号。
根据类别编号从字典中获取对应的类别名称,并进行翻译。
在输入图像上显示分类结果,并展示图像。

def loadOnnx(img_path):session=ort.InferenceSession(r'models\resnet18.onnx',providers=['CPUExecutionProvider'])img=pre_process(img_path)img_back=cv2.imread(img_path)intput_feed={'input':img}session_out=session.run(None,intput_feed)[0]out=np.argmax(session_out,axis=1)[0]res=str(out)# print(dict[res])ans=dict[res].split(',')[1].split(']')[0].strip()ans = translator.translate(ans)cv2.putText(img_back,ans,(100,100),fontFace=1,fontScale=2.0,color=(0,0,255),thickness=3,lineType=cv2.LINE_AA)cv2.imshow('win',img_back)cv2.waitKey(0)cv2.destroyAllWindows()print(ans)

完整代码如下

import cv2
import numpy as np
import torch
from torchvision import models
from torchvision.models import ResNet18_Weights
import onnxruntime as ort
from translate import Translator
translator=Translator(to_lang='Chinese')#翻译成中文
dict={}
with open('类别.txt','r',encoding='utf-8') as f:lines=f.readlines()for line in lines:name=line.split('\t')[0]value=line.split('\t')[1]dict[name]=value
# print(dict)
def resnet():model=models.resnet18(weights=ResNet18_Weights.IMAGENET1K_V1)model.eval()x=torch.randn(1,3,224,224)torch.onnx.export(model,x,'models/resnet18.onnx',input_names=['input'],output_names=['output'])
def pre_process(img_path):#h w c--->224,224,3#归一化#换轴#增加维度img=cv2.imread(img_path)scale_image=cv2.resize(img,dsize=(224,224))rgb_img=cv2.cvtColor(scale_image,cv2.COLOR_BGR2RGB)rgb_img=rgb_img/255rgb_img=np.transpose(rgb_img,(2,0,1))rgb_img=np.expand_dims(rgb_img,0).astype(np.float32)return rgb_img#RGB
def loadOnnx(img_path):session=ort.InferenceSession(r'models\resnet18.onnx',providers=['CPUExecutionProvider'])img=pre_process(img_path)img_back=cv2.imread(img_path)intput_feed={'input':img}session_out=session.run(None,intput_feed)[0]out=np.argmax(session_out,axis=1)[0]res=str(out)# print(dict[res])ans=dict[res].split(',')[1].split(']')[0].strip()ans = translator.translate(ans)cv2.putText(img_back,ans,(100,100),fontFace=1,fontScale=2.0,color=(0,0,255),thickness=3,lineType=cv2.LINE_AA)cv2.imshow('win',img_back)cv2.waitKey(0)cv2.destroyAllWindows()print(ans)pass
if __name__ == '__main__':img_path='dog.png'# resnet()#导出模型loadOnnx(img_path)


三、代码执行流程


在 if __name__ == '__main__': 部分:
定义输入图像路径 img_path。
可以选择调用 resnet() 函数导出模型(注释状态,通常只在第一次运行或模型更新时使用)。
调用 loadOnnx(img_path) 函数对输入图像进行分类和显示结果。

 

 

这篇关于Onnx使用预训练的 ResNet18 模型对输入图像进行分类,并将分类结果显示在图像上的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1101594

相关文章

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

springboot中使用okhttp3的小结

《springboot中使用okhttp3的小结》OkHttp3是一个JavaHTTP客户端,可以处理各种请求类型,比如GET、POST、PUT等,并且支持高效的HTTP连接池、请求和响应缓存、以及异... 在 Spring Boot 项目中使用 OkHttp3 进行 HTTP 请求是一个高效且流行的方式。

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Java使用jar命令配置服务器端口的完整指南

《Java使用jar命令配置服务器端口的完整指南》本文将详细介绍如何使用java-jar命令启动应用,并重点讲解如何配置服务器端口,同时提供一个实用的Web工具来简化这一过程,希望对大家有所帮助... 目录1. Java Jar文件简介1.1 什么是Jar文件1.2 创建可执行Jar文件2. 使用java

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

Java中的抽象类与abstract 关键字使用详解

《Java中的抽象类与abstract关键字使用详解》:本文主要介绍Java中的抽象类与abstract关键字使用详解,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、抽象类的概念二、使用 abstract2.1 修饰类 => 抽象类2.2 修饰方法 => 抽象方法,没有

MyBatis ParameterHandler的具体使用

《MyBatisParameterHandler的具体使用》本文主要介绍了MyBatisParameterHandler的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录一、概述二、源码1 关键属性2.setParameters3.TypeHandler1.TypeHa

Spring 中的切面与事务结合使用完整示例

《Spring中的切面与事务结合使用完整示例》本文给大家介绍Spring中的切面与事务结合使用完整示例,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录 一、前置知识:Spring AOP 与 事务的关系 事务本质上就是一个“切面”二、核心组件三、完