算法导论随笔(一): 操作计数与复杂度Big(O)

2024-08-21 17:18

本文主要是介绍算法导论随笔(一): 操作计数与复杂度Big(O),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近有点空闲时间,准备开一个新坑来纪录自己读《算法导论》的一些读书笔记,有时间的话也讨论一些有趣的算法。首先来谈谈程序的操作计数与算法的复杂度计算,也就是我们常听说的大O。对于新手程序员来说,“算法”这个概念可能看上去比较高深,尤其是“复杂度”这个概念,有时会让人一头雾水。不过看了这篇文章后,相信大家对算法和复杂度的概念会有一个更直观的了解, 即使是只会初中数学,也完全可以看懂。

1. 复杂度的概念

对算法有一定了解的朋友们都知道,判断一个算法好坏的方法是看一个算法的复杂度。这里我们所说的复杂度主要是指时间复杂度(Time complexity)。复杂度越低,代表这个算法越好;相反复杂度越高,代表算法越一般。比如准备面试时可能经常会提到的排序算法,举两个例子来说,最经典的冒泡排序(Bubble sort)的复杂度是
O ( n 2 ) O(n^2) O(n2)
而《算法导论》里提到的归并排序(Merge Sort)的复杂度是
O ( n l o g n ) O(nlogn) O(nlogn)
我们可以看出,两个算法的复杂度不一样。从复杂度的角度来看,归并排序的复杂度低于冒泡排序的复杂度,因此归并排序的算法要好于冒泡排序的算法。也许有人要问,这个大写的字母O是什么意思,为什么通过比较这两个表达式就确定归并排序要好于冒泡排序呢?别急,往下看。 对于一个算法,或者一段程序,我们是有办法计算出它的复杂度的,而大O就是这段计算的一个标准。在介绍大O之前,我们先引入一个概念,叫做Operation Counting,翻译成中文就是“操作计数”。

2. 操作计数(Operation Counting)

直观上来讲,判断一个算法的好坏很简单,就是去看这个算法的执行时间就好了,对于同样的输入,计算出正确结果的时间越短,代表算法更好。一个计算机的每个CPU或内存操作都会耗费一定时间,这些操作(读内存,写内存等等)的时间并不是固定的,计算机的性能越好,操作的时间就越短。那么就存在一个问题,如何在判断算法好坏的时候排除这些变量因素。这也就是为什么要有操作计数这个概念。对于任何一个程序,我们把这个程序里的基本操作(primitive operation)分成以下几个类型:

在这里插入图片描述
翻译:

  1. 赋值给一个变量。比如:int x = 1;
  2. 调用一个函数。比如我们有一个函数int sum(){return x + y;}, 那么sum(2, 3); 这条语句就是调用了一个函数。
  3. 进行一个算术运算,比如 x + y;
  4. 比较两个数字, 比如 (x > y);
  5. 调用数组下标,比如array[0];
  6. 获取一个对象的引用
  7. 从函数(或方法)中返回

对于以上的所有7种基本操作,我们认为它们消耗一个单位的运行时间。也就是说,对于int x=1;我们为这行代码计数1。对于int x = y + z;我们为这行代码计数2,因为它既进行了算术运算,又把结果赋值给了变量x,所以有两个基本操作,即为消耗2个单位的时间。

有了以上的7个基本操作,我们就可以计算出一个程序运行需要消耗的单位时间。比如下面这段代码,它求出了给定数组中的最大值:

int arrayMax(int []A){int max = A[0];for(int i=1; i<A.length; i++){if(max < A[i])max = A[i];} return max;  
}

我们可以计算一下这段程序最多需要消耗多少个单位的运行时间。在最坏的情况下,数组是从小到大排列好的,这样第5行中的max = A[i]每走一次循环时都要被执行到。我们假设数组A中有n个元素,那么第三行中的for循环的条件i<A.length要执行多少次呢?答案是要执行n次。例如,当n=5时,i的数值为1, 2, 3, 4, 5。当i等于5时,程序跳出循环。因此,for循环里面的代码要执行(n-1)次。我们把程序稍微修改一下,就可以直观地看出程序一共需要消耗的操作。

int arrayMax(int []A){int max = A[0];  //count = 2int i = 1; //count = 1for(;i<A.length;){  //count = 1 * n if(max < A[i]) //count = 2 * (n - 1)max = A[i];  //count = 2 * (n - 1)i++;//别忘了当前循环结束后,i自增的操作,i = i + 1, 消耗时间为2//count = 2 * (n - 1)

这篇关于算法导论随笔(一): 操作计数与复杂度Big(O)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1093790

相关文章

SQL中JOIN操作的条件使用总结与实践

《SQL中JOIN操作的条件使用总结与实践》在SQL查询中,JOIN操作是多表关联的核心工具,本文将从原理,场景和最佳实践三个方面总结JOIN条件的使用规则,希望可以帮助开发者精准控制查询逻辑... 目录一、ON与WHERE的本质区别二、场景化条件使用规则三、最佳实践建议1.优先使用ON条件2.WHERE用

Linux链表操作方式

《Linux链表操作方式》:本文主要介绍Linux链表操作方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、链表基础概念与内核链表优势二、内核链表结构与宏解析三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势六、典型应用场景七、调试技巧与

Java Multimap实现类与操作的具体示例

《JavaMultimap实现类与操作的具体示例》Multimap出现在Google的Guava库中,它为Java提供了更加灵活的集合操作,:本文主要介绍JavaMultimap实现类与操作的... 目录一、Multimap 概述Multimap 主要特点:二、Multimap 实现类1. ListMult

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

Python使用Code2flow将代码转化为流程图的操作教程

《Python使用Code2flow将代码转化为流程图的操作教程》Code2flow是一款开源工具,能够将代码自动转换为流程图,该工具对于代码审查、调试和理解大型代码库非常有用,在这篇博客中,我们将深... 目录引言1nVflRA、为什么选择 Code2flow?2、安装 Code2flow3、基本功能演示

Python中OpenCV与Matplotlib的图像操作入门指南

《Python中OpenCV与Matplotlib的图像操作入门指南》:本文主要介绍Python中OpenCV与Matplotlib的图像操作指南,本文通过实例代码给大家介绍的非常详细,对大家的学... 目录一、环境准备二、图像的基本操作1. 图像读取、显示与保存 使用OpenCV操作2. 像素级操作3.

python操作redis基础

《python操作redis基础》Redis(RemoteDictionaryServer)是一个开源的、基于内存的键值对(Key-Value)存储系统,它通常用作数据库、缓存和消息代理,这篇文章... 目录1. Redis 简介2. 前提条件3. 安装 python Redis 客户端库4. 连接到 Re

Java Stream.reduce()方法操作实际案例讲解

《JavaStream.reduce()方法操作实际案例讲解》reduce是JavaStreamAPI中的一个核心操作,用于将流中的元素组合起来产生单个结果,:本文主要介绍JavaStream.... 目录一、reduce的基本概念1. 什么是reduce操作2. reduce方法的三种形式二、reduce

MySQL表空间结构详解表空间到段页操作

《MySQL表空间结构详解表空间到段页操作》在MySQL架构和存储引擎专题中介绍了使用不同存储引擎创建表时生成的表空间数据文件,在本章节主要介绍使用InnoDB存储引擎创建表时生成的表空间数据文件,对... 目录️‍一、什么是表空间结构1.1 表空间与表空间文件的关系是什么?️‍二、用户数据在表空间中是怎么

Python对PDF书签进行添加,修改提取和删除操作

《Python对PDF书签进行添加,修改提取和删除操作》PDF书签是PDF文件中的导航工具,通常包含一个标题和一个跳转位置,本教程将详细介绍如何使用Python对PDF文件中的书签进行操作... 目录简介使用工具python 向 PDF 添加书签添加书签添加嵌套书签Python 修改 PDF 书签Pytho