Spark算子:RDDAction操作–first/count/reduce/collect/collectAsMap

本文主要是介绍Spark算子:RDDAction操作–first/count/reduce/collect/collectAsMap,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

first

def first(): T
first返回RDD中的第一个元素,不排序。

scala> var rdd1 = sc.makeRDD(Array(("A","1"),("B","2"),("C","3")),2)
rdd1: org.apache.spark.rdd.RDD[(String, String)] = ParallelCollectionRDD[33] at makeRDD at :21scala> rdd1.first
res14: (String, String) = (A,1)scala> var rdd1 = sc.makeRDD(Seq(10, 4, 2, 12, 3))
rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at makeRDD at :21scala> rdd1.first
res8: Int = 10

count

def count(): Long

count返回RDD中的元素数量。

scala> var rdd1 = sc.makeRDD(Array(("A","1"),("B","2"),("C","3")),2)
rdd1: org.apache.spark.rdd.RDD[(String, String)] = ParallelCollectionRDD[34] at makeRDD at :21scala> rdd1.count
res15: Long = 3

reduce

def reduce(f: (T, T) ⇒ T): T
根据映射函数f,对RDD中的元素进行二元计算,返回计算结果。

scala> var rdd1 = sc.makeRDD(1 to 10,2)
rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[36] at makeRDD at :21scala> rdd1.reduce(_ + _)
res18: Int = 55scala> var rdd2 = sc.makeRDD(Array(("A",0),("A",2),("B",1),("B",2),("C",1)))
rdd2: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[38] at makeRDD at :21scala> rdd2.reduce((x,y) => {|       (x._1 + y._1,x._2 + y._2)|     })
res21: (String, Int) = (CBBAA,6)

collect

def collect(): Array[T]

def collect[U: ClassTag](f: PartialFunction[T, U]): RDD[U]

collect用于将一个RDD转换成数组。
scala> var rdd1 = sc.makeRDD(1 to 10,2)
rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[36] at makeRDD at :21scala> rdd1.collect
res23: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)<div class="line number10 index9 alt1" style="white-space: pre-wrap; line-height: 20.8px; border-radius: 0px !important; border: 0px !important; bottom: auto !important; float: none !important; height: auto !important; left: auto !important; margin: 0px !important; outline: 0px !important; overflow: visible !important; padding: 0px 1em 0px 0em !important; position: static !important; right: auto !important; top: auto !important; vertical-align: baseline !important; width: auto !important; box-sizing: content-box !important; direction: ltr !important; box-shadow: none !important; background: none rgb(247, 247, 247) !important;"><pre name="code" class="plain" style="font-size: 13px; font-family: Consolas, "Bitstream Vera Sans Mono", "Courier New", Courier, monospace;"><pre name="code" class="plain">scala> val one: PartialFunction[Int, String] = { case 1 => "one"; case _ => "other"}
one: PartialFunction[Int,String] = <function1>scala> val data = sc.parallelize(List(2,3,1))
data: org.apache.spark.rdd.RDD[Int] =ParallelCollectionRDD[11] at parallelize at <console>:12scala> data.collect(one).collect
res4: Array[String] = Array(other, other, one)

 

collectAsMap

def collectAsMap(): Map[K, V]

scala> val data = sc.parallelize(List((1, "www"), (1, "iteblog"), (1, "com"), (2, "bbs"), (2, "iteblog"), (2, "com"), (3, "good")))
data: org.apache.spark.rdd.RDD[(Int, String)] =ParallelCollectionRDD[26] at parallelize at <console>:12scala> data.collectAsMap
res28: scala.collection.Map[Int,String] = Map(2 -> com, 1 -> com, 3 -> good)



                                    

这篇关于Spark算子:RDDAction操作–first/count/reduce/collect/collectAsMap的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1087267

相关文章

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

Python ZIP文件操作技巧详解

《PythonZIP文件操作技巧详解》在数据处理和系统开发中,ZIP文件操作是开发者必须掌握的核心技能,Python标准库提供的zipfile模块以简洁的API和跨平台特性,成为处理ZIP文件的首选... 目录一、ZIP文件操作基础三板斧1.1 创建压缩包1.2 解压操作1.3 文件遍历与信息获取二、进阶技

Java中字符串转时间与时间转字符串的操作详解

《Java中字符串转时间与时间转字符串的操作详解》Java的java.time包提供了强大的日期和时间处理功能,通过DateTimeFormatter可以轻松地在日期时间对象和字符串之间进行转换,下面... 目录一、字符串转时间(一)使用预定义格式(二)自定义格式二、时间转字符串(一)使用预定义格式(二)自

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

Python 中的 with open文件操作的最佳实践

《Python中的withopen文件操作的最佳实践》在Python中,withopen()提供了一个简洁而安全的方式来处理文件操作,它不仅能确保文件在操作完成后自动关闭,还能处理文件操作中的异... 目录什么是 with open()?为什么使用 with open()?使用 with open() 进行

Linux ls命令操作详解

《Linuxls命令操作详解》通过ls命令,我们可以查看指定目录下的文件和子目录,并结合不同的选项获取详细的文件信息,如权限、大小、修改时间等,:本文主要介绍Linuxls命令详解,需要的朋友可... 目录1. 命令简介2. 命令的基本语法和用法2.1 语法格式2.2 使用示例2.2.1 列出当前目录下的文

Mysql表的简单操作(基本技能)

《Mysql表的简单操作(基本技能)》在数据库中,表的操作主要包括表的创建、查看、修改、删除等,了解如何操作这些表是数据库管理和开发的基本技能,本文给大家介绍Mysql表的简单操作,感兴趣的朋友一起看... 目录3.1 创建表 3.2 查看表结构3.3 修改表3.4 实践案例:修改表在数据库中,表的操作主要

C# WinForms存储过程操作数据库的实例讲解

《C#WinForms存储过程操作数据库的实例讲解》:本文主要介绍C#WinForms存储过程操作数据库的实例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、存储过程基础二、C# 调用流程1. 数据库连接配置2. 执行存储过程(增删改)3. 查询数据三、事务处