[19] Opencv_CUDA应用之 基于形状的对象检测与跟踪

2024-06-22 10:04

本文主要是介绍[19] Opencv_CUDA应用之 基于形状的对象检测与跟踪,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Opencv_CUDA应用之 基于形状的对象检测与跟踪

  • 形状可以用作全局特征检测具有不同形状的物体,可以是直线、多边形、圆形或者任何其他不规则形状
  • 利用对象边界、边缘和轮廓可以检测具有特定形状的对象
  • 本文将使用Canny边缘检测算法和Hough变换来检测两个规则形状,即线和圆

1. Canny 边缘检测

  • Canny 结合了高斯滤波、梯度寻找、非极大值抑制和滞后阈值处理

  • 高通滤波器对噪声非常敏感,在Canny边缘检测中,检测边缘之前完成高斯平滑,在检测到边缘后从结果中移除不必要的边缘之后,还具有非极大值抑制阶段

  • 算法代码如下:

#include <cmath>
#include <iostream>
#include "opencv2/opencv.hpp"
#include<opencv2/cudaimgproc.hpp>using namespace std;
using namespace cv;
using namespace cv::cuda;int main()
{Mat h_image = imread("images/drawing.JPG", 0);if (h_image.empty()){cout << "can not open image" << endl;return -1;}GpuMat d_edge, d_image;Mat h_edge;d_image.upload(h_image);cv::Ptr<cv::cuda::CannyEdgeDetector> canny_edge = cv::cuda::createCannyEdgeDetector(2.0, 100.0, 3, false);canny_edge->detect(d_image, d_edge);d_edge.download(h_edge);imshow("source", h_image);imshow("detected edges", h_edge);waitKey(0);return 0;
}

在这里插入图片描述

2. 使用 Hough 变换进行直线检测

  • hough变换常用于直线检测、圆检测
  • 直线检测函数解析:
/*
cv::cuda::createCannyEdgeDetector 函数参数:
第一个r表示在Hough变换中参数的分辨率,通常为1像素
第二个参数是theta在弧度中的分辨率,取1弧度或者pi/180
第三个参数是形成一条线所需点的最小数量
第四个参数是两点之间的最大间隙被视为同一条直线*/Ptr<cuda::HoughSegmentDetector> hough = cuda::createHoughSegmentDetector(1.0f, (float)(CV_PI / 180.0f), 50, 5);
  • 实现代码如下:
#include <cmath>
#include <iostream>
#include "opencv2/opencv.hpp"
#include<opencv2/cudaimgproc.hpp>using namespace std;
using namespace cv;
using namespace cv::cuda;int main()
{Mat h_image = imread("images/drawing.JPG", 0);resize(h_image, h_image, h_image.size());if (h_image.empty()){cout << "can not open image" << endl;return -1;}Mat h_edge;cv::Canny(h_image, h_edge, 100, 200, 3);Mat h_imagec;cv::cvtColor(h_edge, h_imagec, COLOR_GRAY2BGR);Mat h_imageg = h_imagec.clone();vector<Vec4i> h_lines;{const int64 start = getTickCount();HoughLinesP(h_edge, h_lines, 1, CV_PI / 180, 50, 60, 5);const double time_elapsed = (getTickCount() - start) / getTickFrequency();cout << "CPU Time : " << time_elapsed * 1000 << " ms" << endl;cout << "CPU FPS : " << (1 / time_elapsed) << endl;}for (size_t i = 0; i < h_lines.size(); ++i){Vec4i line_point = h_lines[i];line(h_imagec, Point(line_point[0], line_point[1]), Point(line_point[2], line_point[3]), Scalar(0, 0, 255), 2, LINE_AA);}GpuMat d_edge, d_lines;d_edge.upload(h_edge);{const int64 start = getTickCount();Ptr<cuda::HoughSegmentDetector> hough = cuda::createHoughSegmentDetector(1.0f, (float)(CV_PI / 180.0f), 50, 5);hough->detect(d_edge, d_lines);const double time_elapsed = (getTickCount() - start) / getTickFrequency();cout << "GPU Time : " << time_elapsed * 1000 << " ms" << endl;cout << "GPU FPS : " << (1 / time_elapsed) << endl;}//取出直线两个点vector<Vec4i> lines_g;if (!d_lines.empty()){lines_g.resize(d_lines.cols);Mat h_lines(1, d_lines.cols, CV_32SC4, &lines_g[0]);d_lines.download(h_lines);}for (size_t i = 0; i < lines_g.size(); ++i){Vec4i line_point = lines_g[i];line(h_imageg, Point(line_point[0], line_point[1]), Point(line_point[2], line_point[3]), Scalar(0, 0, 255), 2, LINE_AA);}imshow("source", h_image);imshow("detected lines [CPU]", h_imagec);imshow("detected lines [GPU]", h_imageg);imwrite("hough_source.png", h_image);imwrite("hough_cpu_line.png", h_imagec);imwrite("hough_gpu_line.png", h_imageg);waitKey(0);return 0;
}

在这里插入图片描述

3. 对圆形进行检测

  • 球检测或者硬币检测
  • 圆检测函数解析:
/*
cv::cuda::createHoughCirclesDetector 参数
第一个参数是dp,表示累加器分辨率与图像分辨率的反比
第二个参数是检测到的圆中心之间的最小距离,调小会检测出其他错误圆,调大则可能丢失圆
第三个参数是Canny 阈值
第四个参数是累加器阈值
第五个和第六个参数是要检测的圆的最小和最大半径,不确定可以取0
*/
cv::Ptr<cv::cuda::HoughCirclesDetector> detector = 
cv::cuda::createHoughCirclesDetector(1, 100, 122, 50, 1, max(h_image.size().width, h_image.size().height));
  • 算法实现如下:
#include <iostream>
#include "opencv2/opencv.hpp"
#include<opencv2/cudaimgproc.hpp>using namespace cv;
using namespace std;int main(int argc, char** argv)
{Mat h_image = imread("images/eight.tif", IMREAD_COLOR);Mat h_gray;cvtColor(h_image, h_gray, COLOR_BGR2GRAY);cuda::GpuMat d_gray, d_result;std::vector<cv::Vec3f> d_Circles;medianBlur(h_gray, h_gray, 5);cv::Ptr<cv::cuda::HoughCirclesDetector> detector = cv::cuda::createHoughCirclesDetector(1, 100, 122, 50, 1, max(h_image.size().width, h_image.size().height));d_gray.upload(h_gray);detector->detect(d_gray, d_result);d_Circles.resize(d_result.size().width);if (!d_Circles.empty())d_result.row(0).download(cv::Mat(d_Circles).reshape(3, 1));cout << "No of circles: " << d_Circles.size() << endl;for (size_t i = 0; i < d_Circles.size(); i++){Vec3i cir = d_Circles[i];circle(h_image, Point(cir[0], cir[1]), cir[2], Scalar(255, 0, 0), 2, LINE_AA);}imshow("detected circles", h_image);waitKey(0);return 0;
}

在这里插入图片描述

这篇关于[19] Opencv_CUDA应用之 基于形状的对象检测与跟踪的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1083975

相关文章

JavaScript对象转数组的三种方法实现

《JavaScript对象转数组的三种方法实现》本文介绍了在JavaScript中将对象转换为数组的三种实用方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友... 目录方法1:使用Object.keys()和Array.map()方法2:使用Object.entr

利用Python操作Word文档页码的实际应用

《利用Python操作Word文档页码的实际应用》在撰写长篇文档时,经常需要将文档分成多个节,每个节都需要单独的页码,下面:本文主要介绍利用Python操作Word文档页码的相关资料,文中通过代码... 目录需求:文档详情:要求:该程序的功能是:总结需求:一次性处理24个文档的页码。文档详情:1、每个

C#自动化实现检测并删除PDF文件中的空白页面

《C#自动化实现检测并删除PDF文件中的空白页面》PDF文档在日常工作和生活中扮演着重要的角色,本文将深入探讨如何使用C#编程语言,结合强大的PDF处理库,自动化地检测并删除PDF文件中的空白页面,感... 目录理解PDF空白页的定义与挑战引入Spire.PDF for .NET库核心实现:检测并删除空白页

使用MapStruct实现Java对象映射的示例代码

《使用MapStruct实现Java对象映射的示例代码》本文主要介绍了使用MapStruct实现Java对象映射的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、什么是 MapStruct?二、实战演练:三步集成 MapStruct第一步:添加 Mave

Java中的分布式系统开发基于 Zookeeper 与 Dubbo 的应用案例解析

《Java中的分布式系统开发基于Zookeeper与Dubbo的应用案例解析》本文将通过实际案例,带你走进基于Zookeeper与Dubbo的分布式系统开发,本文通过实例代码给大家介绍的非常详... 目录Java 中的分布式系统开发基于 Zookeeper 与 Dubbo 的应用案例一、分布式系统中的挑战二

Java 缓存框架 Caffeine 应用场景解析

《Java缓存框架Caffeine应用场景解析》文章介绍Caffeine作为高性能Java本地缓存框架,基于W-TinyLFU算法,支持异步加载、灵活过期策略、内存安全机制及统计监控,重点解析其... 目录一、Caffeine 简介1. 框架概述1.1 Caffeine的核心优势二、Caffeine 基础2

使用Node.js和PostgreSQL构建数据库应用

《使用Node.js和PostgreSQL构建数据库应用》PostgreSQL是一个功能强大的开源关系型数据库,而Node.js是构建高效网络应用的理想平台,结合这两个技术,我们可以创建出色的数据驱动... 目录初始化项目与安装依赖建立数据库连接执行CRUD操作查询数据插入数据更新数据删除数据完整示例与最佳

Java中实现对象的拷贝案例讲解

《Java中实现对象的拷贝案例讲解》Java对象拷贝分为浅拷贝(复制值及引用地址)和深拷贝(递归复制所有引用对象),常用方法包括Object.clone()、序列化及JSON转换,需处理循环引用问题,... 目录对象的拷贝简介浅拷贝和深拷贝浅拷贝深拷贝深拷贝和循环引用总结对象的拷贝简介对象的拷贝,把一个

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired