10个算法从业人员必须知道的TensorFlow技巧

2024-06-21 08:38

本文主要是介绍10个算法从业人员必须知道的TensorFlow技巧,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

点击上方“AI公园”,关注公众号,选择加“星标“或“置顶”


作者:Rohan Jagtap

编译:ronghuaiyang

导读

掌握这些可以更高效的模型的提高开发效率。

TensorFlow 2.x在构建模型和TensorFlow的整体使用方面提供了很多简单性。那么TF2有什么新变化呢?

  • 使用Keras轻松构建模型,立即执行。

  • 可在任何平台上进行强大的模型部署。

  • 强大的研究实验。

  • 通过清理过时的API和减少重复来简化API。

在本文中,我们将探索TF 2.0的10个特性,这些特性使得使用TensorFlow更加顺畅,减少了代码行数并提高了效率。

1(a). tf.data 构建输入管道

tf.data提供了数据管道和相关操作的功能。我们可以建立管道,映射预处理函数,洗牌或批处理数据集等等。

从tensors构建管道

>>> dataset = tf.data.Dataset.from_tensor_slices([8, 3, 0, 8, 2, 1])
>>> iter(dataset).next().numpy()
8

构建Batch并打乱

# Shuffle
>>> dataset = tf.data.Dataset.from_tensor_slices([8, 3, 0, 8, 2, 1]).shuffle(6)
>>> iter(dataset).next().numpy()
0# Batch
>>> dataset = tf.data.Dataset.from_tensor_slices([8, 3, 0, 8, 2, 1]).batch(2)
>>> iter(dataset).next().numpy()
array([8, 3], dtype=int32)# Shuffle and Batch
>>> dataset = tf.data.Dataset.from_tensor_slices([8, 3, 0, 8, 2, 1]).shuffle(6).batch(2)
>>> iter(dataset).next().numpy()
array([3, 0], dtype=int32)

把两个Datsets压缩成一个

>>> dataset0 = tf.data.Dataset.from_tensor_slices([8, 3, 0, 8, 2, 1])
>>> dataset1 = tf.data.Dataset.from_tensor_slices([1, 2, 3, 4, 5, 6])
>>> dataset = tf.data.Dataset.zip((dataset0, dataset1))
>>> iter(dataset).next()
(<tf.Tensor: shape=(), dtype=int32, numpy=8>, <tf.Tensor: shape=(), dtype=int32, numpy=1>)

映射外部函数

def into_2(num):return num * 2>>> dataset = tf.data.Dataset.from_tensor_slices([8, 3, 0, 8, 2, 1]).map(into_2)
>>> iter(dataset).next().numpy()
16

1(b). ImageDataGenerator

这是tensorflow.keras API的最佳特性之一。ImageDataGenerator能够在批处理和预处理以及数据增强的同时实时生成数据集切片。

生成器允许直接从目录或数据目录中生成数据流。

ImageDataGenerator中关于数据增强的一个误解是,它向现有数据集添加了更多的数据。虽然这是数据增强的实际定义,但是在ImageDataGenerator中,数据集中的图像在训练的不同步骤被动态地变换,使模型可以在未见过的有噪数据上进行训练。

train_datagen = ImageDataGenerator(rescale=1./255,shear_range=0.2,zoom_range=0.2,horizontal_flip=True
)

在这里,对所有样本进行重新缩放(用于归一化),而其他参数用于增强。

train_generator = train_datagen.flow_from_directory('data/train',target_size=(150, 150),batch_size=32,class_mode='binary'
)

我们为实时数据流指定目录。这也可以使用dataframes来完成。

train_generator = flow_from_dataframe(dataframe,x_col='filename',y_col='class',class_mode='categorical',batch_size=32
)

x_col参数定义图像的完整路径,而y_col参数定义用于分类的标签列。

模型可直接用生成器来喂数据。需要指定steps_per_epoch参数,即number_of_samples // batch_size.

model.fit(train_generator,validation_data=val_generator,epochs=EPOCHS,steps_per_epoch=(num_samples // batch_size),validation_steps=(num_val_samples // batch_size)
)

2. 使用tf.image做数据增强

数据增强是必要的。在数据不足的情况下,对数据进行更改并将其作为单独的数据点来处理,是在较少数据下进行训练的一种非常有效的方式。

tf.image API中有用于转换图像的工具,然后可以使用tf.data进行数据增强。

flipped = tf.image.flip_left_right(image)
visualise(image, flipped)

上面的代码的输出
saturated = tf.image.adjust_saturation(image, 5)
visualise(image, saturated)

上面的代码的输出
rotated = tf.image.rot90(image)
visualise(image, rotated)

上面的代码的输出
cropped = tf.image.central_crop(image, central_fraction=0.5)
visualise(image, cropped)

上面的代码的输出

3. TensorFlow Datasets

pip install tensorflow-datasets

这是一个非常有用的库,因为它包含了TensorFlow从各个领域收集的非常著名的数据集。

import tensorflow_datasets as tfdsmnist_data = tfds.load("mnist")
mnist_train, mnist_test = mnist_data["train"], mnist_data["test"]
assert isinstance(mnist_train, tf.data.Dataset)

tensorflow-datasets中可用的数据集的详细列表可以在:https://www.tensorflow.org/datasets/catalog/overview中找到。

tfds提供的数据集类型包括:音频,图像,图像分类,目标检测,结构化数据,摘要,文本,翻译,视频。

4. 使用预训练模型进行迁移学习

迁移学习是机器学习中的一项新技术,非常重要。如果一个基准模型已经被别人训练过了,而且训练它需要大量的资源(例如:多个昂贵的gpu,一个人可能负担不起)。转移学习,解决了这个问题。预先训练好的模型可以在特定的场景中重用,也可以为不同的场景进行扩展。

TensorFlow提供了基准的预训练模型,可以很容易地为所需的场景扩展。

base_model = tf.keras.applications.MobileNetV2(input_shape=IMG_SHAPE,include_top=False,weights='imagenet'
)

这个base_model可以很容易地通过额外的层或不同的模型进行扩展。如:

model = tf.keras.Sequential([base_model,global_average_layer,prediction_layer
])

5. Estimators

估计器是TensorFlow对完整模型的高级表示,它被设计用于易于扩展和异步训练

预先制定的estimators提供了一个非常高级的模型抽象,因此你可以直接集中于训练模型,而不用担心底层的复杂性。例如:

linear_est = tf.estimator.LinearClassifier(feature_columns=feature_columns
)linear_est.train(train_input_fn)
result = linear_est.evaluate(eval_input_fn)

这显示了使用tf.estimator. Estimators构建和训练estimator是多么容易。estimator也可以定制。

TensorFlow有许多estimator ,包括LinearRegressor,BoostedTreesClassifier等。

6. 自定义层

神经网络以许多层深网络而闻名,其中层可以是不同的类型。TensorFlow包含许多预定义的层(如density, LSTM等)。但对于更复杂的体系结构,层的逻辑要比基础的层复杂得多。对于这样的情况,TensorFlow允许构建自定义层。这可以通过子类化tf.keras.layers来实现。

class CustomDense(tf.keras.layers.Layer):def __init__(self, num_outputs):super(CustomDense, self).__init__()self.num_outputs = num_outputsdef build(self, input_shape):self.kernel = self.add_weight("kernel",shape=[int(input_shape[-1]),self.num_outputs])def call(self, input):return tf.matmul(input, self.kernel)

正如在文档中所述,实现自己的层的最好方法是扩展 tf.keras.Layer类并实现:

  1. _init_,你可以在这里做所有与输入无关的初始化。

  2. build,其中你知道输入张量的形状,然后可以做剩下的初始化工作。

  3. call,在这里进行前向计算。

虽然kernel的初始化可以在*_init_中完成,但是最好在build中进行初始化,否则你必须在创建新层的每个实例上显式地指定input_shape*。

7. 自定义训练

tf.keras Sequential 和Model API使得模型的训练更加容易。然而,大多数时候在训练复杂模型时,使用自定义损失函数。此外,模型训练也可能不同于默认训练(例如,分别对不同的模型组件求梯度)。

TensorFlow的自动微分有助于有效地计算梯度。这些原语用于定义自定义训练循环。

def train(model, inputs, outputs, learning_rate):with tf.GradientTape() as t:# Computing Losses from Model Predictioncurrent_loss = loss(outputs, model(inputs))# Gradients for Trainable Variables with Obtained LossesdW, db = t.gradient(current_loss, [model.W, model.b])# Applying Gradients to Weightsmodel.W.assign_sub(learning_rate * dW)model.b.assign_sub(learning_rate * db)

这个循环可以在多个epoch中重复,并且根据用例使用更定制的设置。

8. Checkpoints

保存一个TensorFlow模型可以有两种方式:

  1. SavedModel:保存模型的完整状态以及所有参数。这是独立于源代码的。model.save_weights('checkpoint')

  2. Checkpoints

Checkpoints 捕获模型使用的所有参数的值。使用Sequential API或Model API构建的模型可以简单地以SavedModel格式保存。

然而,对于自定义模型,checkpoints是必需的。

检查点不包含模型定义的计算的任何描述,因此通常只有当源代码可用时,保存的参数值才有用。

保存 Checkpoint

checkpoint_path = “save_path”# Defining a Checkpoint
ckpt = tf.train.Checkpoint(model=model, optimizer=optimizer)# Creating a CheckpointManager Object
ckpt_manager = tf.train.CheckpointManager(ckpt, checkpoint_path, max_to_keep=5)# Saving a Model
ckpt_manager.save()

从 Checkpoint 加载模型

TensorFlow从被加载的对象开始,通过遍历带有带有名字的边的有向图来将变量与检查点值匹配。

if ckpt_manager.latest_checkpoint:ckpt.restore(ckpt_manager.latest_checkpoint)

9. Keras Tuner

这是TensorFlow中的一个相当新的特性。

!pip install keras-tuner

超参数调优调优是对定义的ML模型配置的参数进行筛选的过程。在特征工程和预处理之后,这些因素是模型性能的决定性因素。

# model_builder is a function that builds a model and returns it
tuner = kt.Hyperband(model_builder,objective='val_accuracy', max_epochs=10,factor=3,directory='my_dir',project_name='intro_to_kt'
)

除了HyperBand之外,BayesianOptimization和RandomSearch 也可用于调优。

tuner.search(img_train, label_train, epochs = 10, validation_data=(img_test,label_test), callbacks=[ClearTrainingOutput()]
)# Get the optimal hyperparameters
best_hps = tuner.get_best_hyperparameters(num_trials=1)[0]

然后,我们使用最优超参数训练模型:

model = tuner.hypermodel.build(best_hps)
model.fit(img_train, label_train, epochs=10, validation_data=(img_test, label_test)
)

10. 分布式训练

如果你有多个GPU,并且希望通过分散训练循环在多个GPU上优化训练,TensorFlow的各种分布式训练策略能够优化GPU的使用,并为你操纵GPU上的训练。

tf.distribute.MirroredStrategy是最常用的策略。它是如何工作的呢?

  • 所有的变量和模型图被复制成副本。

  • 输入均匀分布在不同的副本上。

  • 每个副本计算它接收到的输入的损失和梯度。

  • 同步的所有副本的梯度并求和。

  • 同步后,对每个副本上的变量进行相同的更新。

strategy = tf.distribute.MirroredStrategy()with strategy.scope():model = tf.keras.Sequential([tf.keras.layers.Conv2D(32, 3, activation='relu',  input_shape=(28, 28, 1)),tf.keras.layers.MaxPooling2D(),tf.keras.layers.Flatten(),tf.keras.layers.Dense(64, activation='relu'),tf.keras.layers.Dense(10)])model.compile(loss="sparse_categorical_crossentropy",optimizer="adam",metrics=['accuracy'])

—END—

英文原文:https://towardsdatascience.com/10-tensorflow-tricks-every-ml-practitioner-must-know-96b860e53c1

请长按或扫描二维码关注本公众号

喜欢的话,请给我个好看吧

这篇关于10个算法从业人员必须知道的TensorFlow技巧的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1080735

相关文章

Pandas利用主表更新子表指定列小技巧

《Pandas利用主表更新子表指定列小技巧》本文主要介绍了Pandas利用主表更新子表指定列小技巧,通过创建主表和子表的DataFrame对象,并使用映射字典进行数据关联和更新,实现了从主表到子表的同... 目录一、前言二、基本案例1. 创建主表数据2. 创建映射字典3. 创建子表数据4. 更新子表的 zb

快速修复一个Panic的Linux内核的技巧

《快速修复一个Panic的Linux内核的技巧》Linux系统中运行了不当的mkinitcpio操作导致内核文件不能正常工作,重启的时候,内核启动中止于Panic状态,该怎么解决这个问题呢?下面我们就... 感谢China编程(www.chinasem.cn)网友 鸢一雨音 的投稿写这篇文章是有原因的。为了配置完

Python ZIP文件操作技巧详解

《PythonZIP文件操作技巧详解》在数据处理和系统开发中,ZIP文件操作是开发者必须掌握的核心技能,Python标准库提供的zipfile模块以简洁的API和跨平台特性,成为处理ZIP文件的首选... 目录一、ZIP文件操作基础三板斧1.1 创建压缩包1.2 解压操作1.3 文件遍历与信息获取二、进阶技

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

Java Optional的使用技巧与最佳实践

《JavaOptional的使用技巧与最佳实践》在Java中,Optional是用于优雅处理null的容器类,其核心目标是显式提醒开发者处理空值场景,避免NullPointerExce... 目录一、Optional 的核心用途二、使用技巧与最佳实践三、常见误区与反模式四、替代方案与扩展五、总结在 Java

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.