Pentest Muse:一款专为网络安全人员设计的AI助手

2024-06-19 17:36

本文主要是介绍Pentest Muse:一款专为网络安全人员设计的AI助手,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

关于Pentest Muse

Pentest Muse是一款专为网络安全研究人员和渗透测试人员设计和开发的人工智能AI助手,该工具可以帮助渗透测试人员进行头脑风暴、编写Payload、分析代码或执行网络侦查任务。除此之外,Pentest Muse甚至还能够执行命令行代码并以迭代方式解决复杂的问题和任务。

简而言之,我们只需要把想做的事情告诉Pentest Muse,它就能够帮助我们完成想要的安全测试与评估任务。

Pentest Muse Web应用程序

除了命令行接口之外,该工具还提供了Web应用程序版本,广大研究人员可以直接点击【这里】访问Pentest Muse最新的线上版本。

工具要求

annotated-types==0.6.0

anyio==3.7.1

certifi==2023.11.17

distro==1.8.0

h11==0.14.0

httpcore==1.0.2

httpx==0.25.2

idna==3.6

markdown-it-py==3.0.0

mdurl==0.1.2

openai==1.3.5

prompt-toolkit==3.0.41

pydantic==2.5.2

pydantic_core==2.14.5

Pygments==2.17.2

python-dotenv==1.0.0

rich==13.7.0

setuptools==68.0.0

sniffio==1.3.0

tqdm==4.66.1

typing_extensions==4.8.0

wcwidth==0.2.12

wheel==0.41.2

pyfiglet

requests==2.31.0

websocket-client==1.7.0

工具安装

由于该工具基于Python 3.12开发,因此我们首先需要在本地设备上安装并配置好Python 3.12+环境。

接下来,广大研究人员可以直接使用下列命令将该项目源码克隆至本地:

git clone https://github.com/pentestmuse-ai/PentestMuse

然后切换到项目目录中,使用pip工具和项目提供的requirements.txt安装该工具所需的其他依赖组件:

cd PentestMusepip install -r requirements.txt

除此之外,我们也可以将项目代码克隆至本地后,将Pentest Muse以Python包的形式安装:

pip install .

工具运行

聊天模式(默认)

在聊天模式中,我们可以直接与Pentest Muse聊天,并请它帮我们头脑风暴、编写Payload或对代码进行安全分析。参考命令如下:

python run_app.py

pmuse

代理模式(Beta)

我们也可以让Pentest Muse使用代理模式来执行操作。在代理模式下,Pentest Muse能够帮助我们完成一系列简单的任务,例如“帮我们在url为xxx的目标上执行SQL注入测试”。下列命令可以直接以代理模式启动Pentest Muse:

python run_app.py agent

pmuse agent

语言模型选择

API管理

在www.pentestmuse.ai/signup上注册后,我们就可以使用Pentest Muse来管理API了,创建一个账号,打开Pentest Muse的命令行接口,程序将会提示我们进行登录。

OpenAI API密钥

除此之外,我们还可以选择使用自己的OpenAI API密钥。我们可以直接在启动Pentest Muse脚本时,添加下列命令行参数选项即可:

--openai-api-key=[your openai api key

许可证协议

本项目的开发与发布遵循MIT开源许可协议。

项目地址

Pentest Muse:【GitHub传送门】

参考资料

Pentest Muse

这篇关于Pentest Muse:一款专为网络安全人员设计的AI助手的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1075694

相关文章

MyBatis设计SQL返回布尔值(Boolean)的常见方法

《MyBatis设计SQL返回布尔值(Boolean)的常见方法》这篇文章主要为大家详细介绍了MyBatis设计SQL返回布尔值(Boolean)的几种常见方法,文中的示例代码讲解详细,感兴趣的小伙伴... 目录方案一:使用COUNT查询存在性(推荐)方案二:条件表达式直接返回布尔方案三:存在性检查(EXI

基于Python实现智能天气提醒助手

《基于Python实现智能天气提醒助手》这篇文章主要来和大家分享一个实用的Python天气提醒助手开发方案,这个工具可以方便地集成到青龙面板或其他调度框架中使用,有需要的小伙伴可以参考一下... 目录项目概述核心功能技术实现1. 天气API集成2. AI建议生成3. 消息推送环境配置使用方法完整代码项目特点

Spring AI 实现 STDIO和SSE MCP Server的过程详解

《SpringAI实现STDIO和SSEMCPServer的过程详解》STDIO方式是基于进程间通信,MCPClient和MCPServer运行在同一主机,主要用于本地集成、命令行工具等场景... 目录Spring AI 实现 STDIO和SSE MCP Server1.新建Spring Boot项目2.a

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

Spring AI ectorStore的使用流程

《SpringAIectorStore的使用流程》SpringAI中的VectorStore是一种用于存储和检索高维向量数据的数据库或存储解决方案,它在AI应用中发挥着至关重要的作用,本文给大家介... 目录一、VectorStore的基本概念二、VectorStore的核心接口三、VectorStore的

Spring AI集成DeepSeek三步搞定Java智能应用的详细过程

《SpringAI集成DeepSeek三步搞定Java智能应用的详细过程》本文介绍了如何使用SpringAI集成DeepSeek,一个国内顶尖的多模态大模型,SpringAI提供了一套统一的接口,简... 目录DeepSeek 介绍Spring AI 是什么?Spring AI 的主要功能包括1、环境准备2

Spring AI集成DeepSeek实现流式输出的操作方法

《SpringAI集成DeepSeek实现流式输出的操作方法》本文介绍了如何在SpringBoot中使用Sse(Server-SentEvents)技术实现流式输出,后端使用SpringMVC中的S... 目录一、后端代码二、前端代码三、运行项目小天有话说题外话参考资料前面一篇文章我们实现了《Spring

Spring AI与DeepSeek实战一之快速打造智能对话应用

《SpringAI与DeepSeek实战一之快速打造智能对话应用》本文详细介绍了如何通过SpringAI框架集成DeepSeek大模型,实现普通对话和流式对话功能,步骤包括申请API-KEY、项目搭... 目录一、概述二、申请DeepSeek的API-KEY三、项目搭建3.1. 开发环境要求3.2. mav

web网络安全之跨站脚本攻击(XSS)详解

《web网络安全之跨站脚本攻击(XSS)详解》:本文主要介绍web网络安全之跨站脚本攻击(XSS)的相关资料,跨站脚本攻击XSS是一种常见的Web安全漏洞,攻击者通过注入恶意脚本诱使用户执行,可能... 目录前言XSS 的类型1. 存储型 XSS(Stored XSS)示例:危害:2. 反射型 XSS(Re

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo