DeepSeek-V2-Chat多卡推理(不考虑性能)

2024-06-12 23:44

本文主要是介绍DeepSeek-V2-Chat多卡推理(不考虑性能),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

@TOC

本文演示了如何使用accelerate推理DeepSeek-V2-Chat(裁剪以后的模型,仅演示如何将权值拆到多卡)

代码

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
from accelerate import init_empty_weights
import sys
from accelerate import dispatch_model, infer_auto_device_map
from accelerate.utils import get_balanced_memory
from torch.cuda.amp import autocast
from torch.utils._python_dispatch import TorchDispatchMode
from dataclasses import dataclass
from typing import Any
import torch.cuda
import multiprocessing as mp@dataclass
class _ProfilerState:cls: Anyobject: Any = Noneclass TorchDumpDispatchMode(TorchDispatchMode):def __init__(self,parent):super().__init__()self.parent=parentself.op_index=0self.cvt_count=0def get_max_gpu_id(self,tensors):max_gpu_id = -1max_index = -1tensor_index=[]for i, tensor in enumerate(tensors):if not isinstance(tensor, torch.Tensor):continuetensor_index.append(i)if tensor.is_cuda:gpu_id = tensor.get_device()if gpu_id > max_gpu_id:max_gpu_id = gpu_idmax_index = iif max_gpu_id == -1:return None, None,tensor_indexreturn max_index, max_gpu_id,tensor_indexdef convert(self,op_type,tensor_list):index, gpu_id,tensor_index = self.get_max_gpu_id(tensor_list)if index is None:returnkeep_index=set(tensor_index)-set([index])device=torch.device(f"cuda:{gpu_id}")for i in keep_index:if tensor_list[i].device!=device:#print(f"{op_type} {i} {tensor_list[i].device} -> {device}")tensor_list[i].data=tensor_list[i].data.to(device,non_blocking=True)#卡间通信是串行的,所有多stream并不能充分提升性能def __torch_dispatch__(self, func, types, args=(),kwargs=None):func_packet = func._overloadpacketif kwargs is None:kwargs = {}op_type=f"{func}"self.op_index+=1if isinstance(args, list) or isinstance(args, tuple):self.convert(op_type,args)elif isinstance(args[0], list) or isinstance(args[0], tuple):self.convert(op_type,args[0])else:print(op_type)output= func(*args,**kwargs)return outputclass TorchDumper:def __init__(self,**kwargs):self.p= _ProfilerState(TorchDumpDispatchMode)self.kwargs=kwargsdef __enter__(self):if self.p.object is None:o = self.p.cls(self,**self.kwargs)o.__enter__()self.p.object = oelse:self.p.object.step()return selfdef __exit__(self, exc_type, exc_val, exc_tb):TorchDumper._CURRENT_Dumper = Noneif self.p.object is not None:self.p.object.__exit__(exc_type, exc_val, exc_tb)del self.p.objectmodel_name = "./models/deepseek-ai/DeepSeek-V2-Chat/"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
max_memory = {i: "23GB" for i in range(8)}
sys.path.insert(0,model_name)model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True,attn_implementation="eager",torch_dtype=torch.bfloat16)
model=model.eval()no_split_module_classes = ['DeepseekV2MLP','DeepseekV2Attention']
#no_split_module_classes = ['DeepseekV2DecoderLayer']device_map = infer_auto_device_map(model,max_memory=max_memory,no_split_module_classes=no_split_module_classes,dtype='float16')model = dispatch_model(model, device_map=device_map)
model.generation_config = GenerationConfig.from_pretrained(model_name)
model.generation_config.pad_token_id = model.generation_config.eos_token_idmessages = [{"role": "user", "content": "Write a piece of quicksort code in C++"} ]
input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
with TorchDumper():outputs = model.generate(input_tensor.to(model.device), max_new_tokens=100)
result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)
print(result)

这篇关于DeepSeek-V2-Chat多卡推理(不考虑性能)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1055684

相关文章

JVisualVM之Java性能监控与调优利器详解

《JVisualVM之Java性能监控与调优利器详解》本文将详细介绍JVisualVM的使用方法,并结合实际案例展示如何利用它进行性能调优,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全... 目录1. JVisualVM简介2. JVisualVM的安装与启动2.1 启动JVisualVM2

Java使用MethodHandle来替代反射,提高性能问题

《Java使用MethodHandle来替代反射,提高性能问题》:本文主要介绍Java使用MethodHandle来替代反射,提高性能问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录一、认识MethodHandle1、简介2、使用方式3、与反射的区别二、示例1、基本使用2、(重要)

PyTorch高级特性与性能优化方式

《PyTorch高级特性与性能优化方式》:本文主要介绍PyTorch高级特性与性能优化方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、自动化机制1.自动微分机制2.动态计算图二、性能优化1.内存管理2.GPU加速3.多GPU训练三、分布式训练1.分布式数据

python通过curl实现访问deepseek的API

《python通过curl实现访问deepseek的API》这篇文章主要为大家详细介绍了python如何通过curl实现访问deepseek的API,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编... API申请和充值下面是deepeek的API网站https://platform.deepsee

Java的"伪泛型"变"真泛型"后对性能的影响

《Java的伪泛型变真泛型后对性能的影响》泛型擦除本质上就是擦除与泛型相关的一切信息,例如参数化类型、类型变量等,Javac还将在需要时进行类型检查及强制类型转换,甚至在必要时会合成桥方法,这篇文章主... 目录1、真假泛型2、性能影响泛型存在于Java源代码中,在编译为字节码文件之前都会进行泛型擦除(ty

springboot整合阿里云百炼DeepSeek实现sse流式打印的操作方法

《springboot整合阿里云百炼DeepSeek实现sse流式打印的操作方法》:本文主要介绍springboot整合阿里云百炼DeepSeek实现sse流式打印,本文给大家介绍的非常详细,对大... 目录1.开通阿里云百炼,获取到key2.新建SpringBoot项目3.工具类4.启动类5.测试类6.测

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

SpringBoot配置Ollama实现本地部署DeepSeek

《SpringBoot配置Ollama实现本地部署DeepSeek》本文主要介绍了在本地环境中使用Ollama配置DeepSeek模型,并在IntelliJIDEA中创建一个Sprin... 目录前言详细步骤一、本地配置DeepSeek二、SpringBoot项目调用本地DeepSeek前言随着人工智能技

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

Golang中拼接字符串的6种方式性能对比

《Golang中拼接字符串的6种方式性能对比》golang的string类型是不可修改的,对于拼接字符串来说,本质上还是创建一个新的对象将数据放进去,主要有6种拼接方式,下面小编就来为大家详细讲讲吧... 目录拼接方式介绍性能对比测试代码测试结果源码分析golang的string类型是不可修改的,对于拼接字