使用spark基于出租车GPS数据实现车辆数量统计以及北京每个城区的车辆位置点数分析

本文主要是介绍使用spark基于出租车GPS数据实现车辆数量统计以及北京每个城区的车辆位置点数分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

使用spark基于出租车GPS数据实现车辆数量统计以及北京每个城区的车辆位置点数分析

本文将介绍如何使用pyspark以及scala实现的spark分析出租车GPS数据,具体来说,我们将计算每个北京城区内的车辆位置点数,以及统计出租车的数量。我们将使用两个数据集:district.txt 包含北京各城区的中心坐标和半径,taxi_gps.txt 包含出租车的GPS位置数据。以下是数据文件的示例内容

1、数据解析

出租车GPS数据文件(taxi_gps.txt)
在这里插入图片描述
北京区域中心坐标及半径数据文件(district.txt)
在这里插入图片描述

2、需求分析

·能够输出以下统计信息
·A:该出租车GPS数据文件(taxi_gps.txt)包含多少量车?
·B:北京每个城区的车辆位置点数(每辆车有多个位置点,允许重复)

A输出:
·以第一列统计车辆数,去重·输出

B输出:
1.从(district.txt)文件中取第一个区的记录,获得其名称D、中心坐标M(xo,yo)和半径r;
2.从(taxi_gps.txt)中获取第一条位置点记录,获得其坐标N(xp,y)
3.利用欧几里得距离计算公式计算点M和N的距离dis,如果dis<r,则认为该位置记录属于区域D;得到<D¡,1>
4.继续从2开始循环,获得第二个位置记录;直至所有记录遍历完。·5.继续从1开始循环,获得第二个区的记录 district.txt

3、统计出租车的数量

接下来,我们统计出租车的数量。我们可以简单地读取taxi_gps.txt文件,然后使用countDistinct函数来统计不同车辆标识的数量。

python实现该功能的代码

from pyspark.sql import SparkSession
from pyspark.sql.functions import countDistinct# 创建一个SparkSession
spark = SparkSession.builder \.getOrCreate()# 读取出租车GPS数据
taxi_df = spark.read.csv("data/taxi_gps.txt", header=False, inferSchema=True)# 计算唯一出租车的数量
num_taxis = taxi_df.select(countDistinct("_c0")).collect()[0][0]# 输出结果
print("出租车的数量为:", num_taxis)# 停止SparkSession
spark.stop()

scala实现该功能的代码

import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.functions.countDistinctobject CarCount{def main(args: Array[String]): Unit = {// 创建一个SparkSessionval spark = SparkSession.builder().appName("TaxiGPS").master("local").getOrCreate()// 读取出租车GPS数据val taxiDF = spark.read.option("header", "false").option("inferSchema", "true").csv("data/taxi_gps.txt")// 计算唯一出租车的数量val numTaxis = taxiDF.select(countDistinct("_c0")).collect()(0)(0)// 输出结果println(s"出租车的数量为: $numTaxis")// 停止SparkSessionspark.stop()}}

在这里插入图片描述

4、计算每个城区内每辆车的位置点数

首先,我们使用PySpark读取数据并计算每个城区内每辆车的位置点数。为了实现这一点,我们需要计算每个出租车位置与各城区中心的距离,然后检查距离是否在城区的半径范围内。

python实现该功能的代码

from pyspark.sql import SparkSession
from pyspark.sql.functions import col, countDistinct, udf# 创建一个SparkSession
spark = SparkSession.builder \.getOrCreate()# 读取区域信息和出租车GPS数据
district_df = spark.read.csv("data/district.txt", header=False, inferSchema=True)
taxi_df = spark.read.csv("data/taxi_gps.txt", header=False, inferSchema=True)# 提取区域信息
district_info = district_df.select(col("_c0").alias("area"),col("_c1").cast("double").alias("center_a"),col("_c2").cast("double").alias("center_b"),col("_c3").cast("double").alias("radio"))# 定义UDF以计算两点之间的欧几里得距离
def euclidean_distance(x1, y1, x2, y2):return ((x1 - x2) ** 2 + (y1 - y2) ** 2) ** 0.5calculate_distance = udf(euclidean_distance)# 计算每个城区内每辆车的位置点数
result_df = district_info.crossJoin(taxi_df) \.withColumn("distance", calculate_distance(col("center_a"), col("center_b"), col("_c4"), col("_c5"))).createTempView("car")spark.sql("select _c0 as car,count(distinct(area)) as cnt  from car where distance*1000 < radio group by _c0").show()spark.stop()

scala实现该功能的代码

package org.exampleimport org.apache.spark.sql.SparkSession
import org.apache.spark.sql.functions._
import org.apache.spark.sql.expressions.UserDefinedFunctionobject CarLocation {def main(args: Array[String]): Unit = {// 创建一个SparkSessionval spark = SparkSession.builder().appName("TaxiGPS").master("local[*]").getOrCreate()// 读取区域信息和出租车GPS数据val districtDF = spark.read.option("header", "false").option("inferSchema", "true").csv("data/district.txt")val taxiDF = spark.read.option("header", "false").option("inferSchema", "true").csv("data/taxi_gps.txt")// 提取区域信息val districtInfo = districtDF.select(col("_c0").alias("area"),col("_c1").cast("double").alias("center_a"),col("_c2").cast("double").alias("center_b"),col("_c3").cast("double").alias("radio"))// 定义UDF以计算两点之间的欧几里得距离def euclideanDistance(x1: Double, y1: Double, x2: Double, y2: Double): Double = {math.sqrt(math.pow(x1 - x2, 2) + math.pow(y1 - y2, 2))}val calculateDistance: UserDefinedFunction = udf(euclideanDistance _)// 计算每个城区内每辆车的位置点数val resultDF = districtInfo.crossJoin(taxiDF).withColumn("distance", calculateDistance(col("center_a"), col("center_b"), col("_c4"), col("_c5")))resultDF.createOrReplaceTempView("car")spark.sql("SELECT _c0 AS car, COUNT(DISTINCT area) AS cnt FROM car WHERE distance * 1000 < radio GROUP BY _c0").show()// 停止SparkSessionspark.stop()}}

在这里插入图片描述

总结

通过以上两个代码示例,我们使用PySpark成功地计算了北京各城区内每辆车的位置点数,并统计了出租车的数量。这些分析可以帮助我们更好地理解出租车在各个城区的分布情况,进而为城市交通管理提供数据支持。PySpark强大的数据处理能力和灵活的编程接口,使得我们能够轻松地处理和分析大规模的GPS数据。

如有遇到问题可以找小编沟通交流哦。另外小编帮忙辅导大课作业,学生毕设等。不限于MapReduce, MySQL, python,java,大数据,模型训练等。 hadoop hdfs yarn spark Django flask flink kafka flume datax sqoop seatunnel echart可视化 机器学习等
在这里插入图片描述

这篇关于使用spark基于出租车GPS数据实现车辆数量统计以及北京每个城区的车辆位置点数分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1052150

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

Linux join命令的使用及说明

《Linuxjoin命令的使用及说明》`join`命令用于在Linux中按字段将两个文件进行连接,类似于SQL的JOIN,它需要两个文件按用于匹配的字段排序,并且第一个文件的换行符必须是LF,`jo... 目录一. 基本语法二. 数据准备三. 指定文件的连接key四.-a输出指定文件的所有行五.-o指定输出

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置