使用spark基于出租车GPS数据实现车辆数量统计以及北京每个城区的车辆位置点数分析

本文主要是介绍使用spark基于出租车GPS数据实现车辆数量统计以及北京每个城区的车辆位置点数分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

使用spark基于出租车GPS数据实现车辆数量统计以及北京每个城区的车辆位置点数分析

本文将介绍如何使用pyspark以及scala实现的spark分析出租车GPS数据,具体来说,我们将计算每个北京城区内的车辆位置点数,以及统计出租车的数量。我们将使用两个数据集:district.txt 包含北京各城区的中心坐标和半径,taxi_gps.txt 包含出租车的GPS位置数据。以下是数据文件的示例内容

1、数据解析

出租车GPS数据文件(taxi_gps.txt)
在这里插入图片描述
北京区域中心坐标及半径数据文件(district.txt)
在这里插入图片描述

2、需求分析

·能够输出以下统计信息
·A:该出租车GPS数据文件(taxi_gps.txt)包含多少量车?
·B:北京每个城区的车辆位置点数(每辆车有多个位置点,允许重复)

A输出:
·以第一列统计车辆数,去重·输出

B输出:
1.从(district.txt)文件中取第一个区的记录,获得其名称D、中心坐标M(xo,yo)和半径r;
2.从(taxi_gps.txt)中获取第一条位置点记录,获得其坐标N(xp,y)
3.利用欧几里得距离计算公式计算点M和N的距离dis,如果dis<r,则认为该位置记录属于区域D;得到<D¡,1>
4.继续从2开始循环,获得第二个位置记录;直至所有记录遍历完。·5.继续从1开始循环,获得第二个区的记录 district.txt

3、统计出租车的数量

接下来,我们统计出租车的数量。我们可以简单地读取taxi_gps.txt文件,然后使用countDistinct函数来统计不同车辆标识的数量。

python实现该功能的代码

from pyspark.sql import SparkSession
from pyspark.sql.functions import countDistinct# 创建一个SparkSession
spark = SparkSession.builder \.getOrCreate()# 读取出租车GPS数据
taxi_df = spark.read.csv("data/taxi_gps.txt", header=False, inferSchema=True)# 计算唯一出租车的数量
num_taxis = taxi_df.select(countDistinct("_c0")).collect()[0][0]# 输出结果
print("出租车的数量为:", num_taxis)# 停止SparkSession
spark.stop()

scala实现该功能的代码

import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.functions.countDistinctobject CarCount{def main(args: Array[String]): Unit = {// 创建一个SparkSessionval spark = SparkSession.builder().appName("TaxiGPS").master("local").getOrCreate()// 读取出租车GPS数据val taxiDF = spark.read.option("header", "false").option("inferSchema", "true").csv("data/taxi_gps.txt")// 计算唯一出租车的数量val numTaxis = taxiDF.select(countDistinct("_c0")).collect()(0)(0)// 输出结果println(s"出租车的数量为: $numTaxis")// 停止SparkSessionspark.stop()}}

在这里插入图片描述

4、计算每个城区内每辆车的位置点数

首先,我们使用PySpark读取数据并计算每个城区内每辆车的位置点数。为了实现这一点,我们需要计算每个出租车位置与各城区中心的距离,然后检查距离是否在城区的半径范围内。

python实现该功能的代码

from pyspark.sql import SparkSession
from pyspark.sql.functions import col, countDistinct, udf# 创建一个SparkSession
spark = SparkSession.builder \.getOrCreate()# 读取区域信息和出租车GPS数据
district_df = spark.read.csv("data/district.txt", header=False, inferSchema=True)
taxi_df = spark.read.csv("data/taxi_gps.txt", header=False, inferSchema=True)# 提取区域信息
district_info = district_df.select(col("_c0").alias("area"),col("_c1").cast("double").alias("center_a"),col("_c2").cast("double").alias("center_b"),col("_c3").cast("double").alias("radio"))# 定义UDF以计算两点之间的欧几里得距离
def euclidean_distance(x1, y1, x2, y2):return ((x1 - x2) ** 2 + (y1 - y2) ** 2) ** 0.5calculate_distance = udf(euclidean_distance)# 计算每个城区内每辆车的位置点数
result_df = district_info.crossJoin(taxi_df) \.withColumn("distance", calculate_distance(col("center_a"), col("center_b"), col("_c4"), col("_c5"))).createTempView("car")spark.sql("select _c0 as car,count(distinct(area)) as cnt  from car where distance*1000 < radio group by _c0").show()spark.stop()

scala实现该功能的代码

package org.exampleimport org.apache.spark.sql.SparkSession
import org.apache.spark.sql.functions._
import org.apache.spark.sql.expressions.UserDefinedFunctionobject CarLocation {def main(args: Array[String]): Unit = {// 创建一个SparkSessionval spark = SparkSession.builder().appName("TaxiGPS").master("local[*]").getOrCreate()// 读取区域信息和出租车GPS数据val districtDF = spark.read.option("header", "false").option("inferSchema", "true").csv("data/district.txt")val taxiDF = spark.read.option("header", "false").option("inferSchema", "true").csv("data/taxi_gps.txt")// 提取区域信息val districtInfo = districtDF.select(col("_c0").alias("area"),col("_c1").cast("double").alias("center_a"),col("_c2").cast("double").alias("center_b"),col("_c3").cast("double").alias("radio"))// 定义UDF以计算两点之间的欧几里得距离def euclideanDistance(x1: Double, y1: Double, x2: Double, y2: Double): Double = {math.sqrt(math.pow(x1 - x2, 2) + math.pow(y1 - y2, 2))}val calculateDistance: UserDefinedFunction = udf(euclideanDistance _)// 计算每个城区内每辆车的位置点数val resultDF = districtInfo.crossJoin(taxiDF).withColumn("distance", calculateDistance(col("center_a"), col("center_b"), col("_c4"), col("_c5")))resultDF.createOrReplaceTempView("car")spark.sql("SELECT _c0 AS car, COUNT(DISTINCT area) AS cnt FROM car WHERE distance * 1000 < radio GROUP BY _c0").show()// 停止SparkSessionspark.stop()}}

在这里插入图片描述

总结

通过以上两个代码示例,我们使用PySpark成功地计算了北京各城区内每辆车的位置点数,并统计了出租车的数量。这些分析可以帮助我们更好地理解出租车在各个城区的分布情况,进而为城市交通管理提供数据支持。PySpark强大的数据处理能力和灵活的编程接口,使得我们能够轻松地处理和分析大规模的GPS数据。

如有遇到问题可以找小编沟通交流哦。另外小编帮忙辅导大课作业,学生毕设等。不限于MapReduce, MySQL, python,java,大数据,模型训练等。 hadoop hdfs yarn spark Django flask flink kafka flume datax sqoop seatunnel echart可视化 机器学习等
在这里插入图片描述

这篇关于使用spark基于出租车GPS数据实现车辆数量统计以及北京每个城区的车辆位置点数分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1052150

相关文章

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ

PostgreSQL中MVCC 机制的实现

《PostgreSQL中MVCC机制的实现》本文主要介绍了PostgreSQL中MVCC机制的实现,通过多版本数据存储、快照隔离和事务ID管理实现高并发读写,具有一定的参考价值,感兴趣的可以了解一下... 目录一 MVCC 基本原理python1.1 MVCC 核心概念1.2 与传统锁机制对比二 Postg

SpringBoot整合Flowable实现工作流的详细流程

《SpringBoot整合Flowable实现工作流的详细流程》Flowable是一个使用Java编写的轻量级业务流程引擎,Flowable流程引擎可用于部署BPMN2.0流程定义,创建这些流程定义的... 目录1、流程引擎介绍2、创建项目3、画流程图4、开发接口4.1 Java 类梳理4.2 查看流程图4

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.