计算机视觉与模式识别实验2-1 角点检测算法(Harris,SUSAN,Moravec)

本文主要是介绍计算机视觉与模式识别实验2-1 角点检测算法(Harris,SUSAN,Moravec),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 🧡🧡实验流程🧡🧡
      • Harris算法
      • SUSAN算法
      • Moravec算法
    • 🧡🧡全部代码🧡🧡

🧡🧡实验流程🧡🧡

Harris算法

Harris算法实现步骤:
在这里插入图片描述

  • w表示窗函数,在这个算法中,用于对梯度图像的平方进行滤波,以减少图像中的噪声,从而提高角点检测的准确性。
  • R(i,j) 表示图像中像素点 (i,j) 处的角点响应值。这个值描述了在该像素点周围区域的灰度变化情况,从而表征了该像素是否可能是角点。通常情况下, R(i,j) 的值越大,表示该像素点越可能是角点。因此对于每个像素点,非极大值抑制会检查其周围邻域内的角点响应值,当它是该邻域内的最大值时,才将该像素点的角点响应值保留下来。

SUSAN算法

SUSAN角点检测算法实现步骤:
① 定义局部邻域:对于图像中的每个像素,定义一个局部邻域,通常是以该像素为中心的圆形区域。
② 计算灰度差异度:对于局部邻域内的每个像素,计算它与中心像素的灰度差异度。通常使用的是像素间的灰度差的绝对值作为度量。
③ 确定相似像素:根据计算得到的灰度差异度,判断每个像素是否属于同一类别。具体而言,如果像素与中心像素的灰度差异度小于一定阈值,则认为它们属于同一类别;否则,它们属于不同的类别。
④ 统计局部邻域中相似像素的数量:统计局部邻域中与中心像素属于同一类别的像素数量。
⑤ 角点判断:如果局部邻域中相似像素的数量小于一定阈值,则认为该中心像素是一个角点

原始图像
在这里插入图片描述
Harris、SUSAN角点检测效果如下:
在这里插入图片描述在这里插入图片描述
分析:直观上看,SUSAN标记的角点数更多,由于它是基于像素灰度值的局部统计特征来判断角点的,因此在一些局部特征明显的图像部位中效果较好。它们在理论实现方面有一些相似之处(都需要非极大值抑制),不同的是Harris角点检测算法基于图像局部区域的灰度变化来检测角点,通过计算图像的梯度和自相关矩阵的特征值来判断是否存在角点;而SUSAN 角点检测算法基于像素点的灰度值与周围像素的灰度值的差异来检测角点,通过比较像素与其周围邻域的灰度值之间的差异来判断是否为角点。另外从计算效率感受,SUSAN角点检测算法的计算相对较简单和高效。

Moravec算法

实现步骤:
① 计算窗口中心偏移到四个方向上时的灰度平方差,取最小值,作为兴趣值IV。
② 设置阈值T,将兴趣值大于阈值的点作为候选点(IV>T)。
③ 局部区域选取候选点中的极值点作为特征点。 (局部非最大值抑制)
其中,四个方向灰度差的计算举例如下:
在这里插入图片描述
效果如下:
在这里插入图片描述
分析:可以看到,在参数设置合理的情况下,检测效果不比上述两种算法差,并且检测出了上述方法没有测出的角点,如嘴角处、肩膀处等等。另外,由于算法的局限性,在灰度值很相近的情况下,可能产生误检测,比如这里头发处其实较多误检测。

综上所述,从实验直观感受来说,三种算法总结:

  • 精度上:Harris 算法更优。
  • 鲁棒性:SUSAN 对于噪声有较好的鲁棒性。
  • 计算效率和理论理解上:Moravec 实现简单,对精度要求不是特别高,可以选择 Moravec 算法。

🧡🧡全部代码🧡🧡

%%% Harrisclear; clc ;tic;
ori_im = imread('img/test1_Lena.tif');     % 读取图像
if(size(ori_im,3)==3)ori_im = rgb2gray(uint8(ori_im));  %转为灰度图像
end
imshow(ori_im);
% ===================计算图像的梯度===================
% fx = [5 0 -5;8 0 -8;5 0 -5];          % 高斯函数一阶微分,x方向(用于改进的Harris角点提取算法)
fx = [-2 -1 0 1 2];                 % x方向梯度算子(用于Harris角点提取算法)
Ix = filter2(fx,ori_im);              % x方向滤波
% fy = [5 8 5;0 0 0;-5 -8 -5];          % 高斯函数一阶微分,y方向(用于改进的Harris角点提取算法)
fy = [-2;-1;0;1;2];                 % y方向梯度算子(用于Harris角点提取算法)
Iy = filter2(fy,ori_im);              % y方向滤波% ===================计算自相关矩阵===================
Ix2 = Ix.^2;
Iy2 = Iy.^2;
Ixy = Ix.*Iy;
clear Ix;
clear Iy;
h= fspecial('gaussian',[7 7],2);      % 产生7*7的高斯窗函数,sigma=2
Ix2 = filter2(h,Ix2);
Iy2 = filter2(h,Iy2);
Ixy = filter2(h,Ixy);% ===================计算角点响应值 R===================
height = size(ori_im,1);
width = size(ori_im,2);
result = zeros(height,width);  % 纪录角点位置,角点处值为1
R = zeros(height,width);
for i = 1:heightfor j = 1:widthM = [Ix2(i,j) Ixy(i,j);Ixy(i,j) Iy2(i,j)]; % 自相关矩阵R(i,j) = det(M)-0.06*(trace(M))^2;   end
end% ===================进行非极大值抑制===================
cnt = 0;
for i = 2:height-1for j = 2:width-1% 进行非极大抑制,窗口大小3*3if  R(i,j) > R(i-1,j-1) && R(i,j) > R(i-1,j) && R(i,j) > R(i-1,j+1) && R(i,j) > R(i,j-1) && R(i,j) > R(i,j+1) && R(i,j) > R(i+1,j-1) && R(i,j) > R(i+1,j) && R(i,j) > R(i+1,j+1)result(i,j) = 1;cnt = cnt+1;endend
end% ===================对检测到的角点按照角点响应值进行排序,然后取前 ps 个角点(设定阈值)===================
Rsort=zeros(cnt,1);
[posr, posc] = find(result == 1);
for i=1:cntRsort(i)=R(posr(i),posc(i));
end
[Rsort,ix]=sort(Rsort,1);
Rsort=flipud(Rsort);
ix=flipud(ix);
ps=100;
posr2=zeros(ps,1);
posc2=zeros(ps,1);
for i=1:psposr2(i)=posr(ix(i));posc2(i)=posc(ix(i));
end% ===================显示原始图像,并在图像上标记检测到的角点===================
imshow(ori_im);
hold on;
plot(posc2,posr2,'g+');
title('Harris');
%%% SUSAN%设置圆周模板半径和滑动窗口的步长
radius=3;Xstep=1;Ystep=1;
template=fspecial('disk',radius);
template(template>0.01)=1;  %模板二值化
template(template<0.01)=0;%提取圆周模板的逻辑地址
[tem_x,tem_y]=find(template==1);
tem_x=tem_x-radius-1;
tem_y=tem_y-radius-1;t=45; %USAN判定阈值
I = imread('img/test1_Lena.tif');
W=size(I,2);H=size(I,1); %图像大小
nucleas_X=radius+1:Xstep:W-radius; %模板圆心即nucleas运动范围
nucleas_Y=radius+1:Ystep:H-radius;
USAN=zeros(size(I,1),size(I,2));  %初始化USAN累加器
%网格遍历
tic;
for y=nucleas_Yfor x=nucleas_Xfor e=1:length(tem_x)  %圆周模板上进行判定delta=I(y+tem_y(e),x+tem_x(e))-I(y,x);if delta<tUSAN(y,x)=USAN(y,x)+1;  %低于阈值则收纳endend  fprintf(strcat('已处理第','(',num2str(y),',',num2str(x),')','像素点..\n'));end
end
toc;
%边缘检测
%
%formula: R(r0) =   g-USAN(r0)  , if USAN(r0)<g
%                    0           ,  otherwise   
%          where g=3/4*max(USAN(:)), USAN越小边缘响应越强,其中角点极小,对应R极大
g=1/2*max(USAN(:));
R=zeros(H,W);
for i=1:size(USAN,1)for j=1:size(USAN,2)if USAN(i,j)<gR(i,j)=g-USAN(i,j);elseR(i,j)=0;endend
end
BIN=zeros(H,W);
BIN(R>0)=1;
figure(1),imshow(BIN,[]),title('SUSAN  边缘检测');%角点检测(非极大值抑制)
corners=[];
for i=2:H-1for j=2:W-1 if R(i,j)>max([max(R(i-1,j-1:j+1)),R(i,j-1) ,R(i,j+1), max(R(i+1,j-1:j+1))])corners=[corners;[i,j]];endend
end
% I = insertMarker(I,corners);
figure(2);imshow(I);hold on;
set(gca,'xaxislocation','top','yaxislocation','left','ydir','reverse');
scatter(corners(:,2),corners(:,1),'x','g'),title('SUSAN');
hold off;
%%% Moravecclose all;
clear all;
clc;
img=(imread('img/test1_LenaRGB.tif'));
img = double(rgb2gray(img));
[X,Y]=size(img);
img2 = imread ('img/test1_LenaRGB.tif');
img2 = rgb2gray(img2);imgn=zeros(X,Y);
n=2;%控制窗口大小。窗口大小为 2*n+1% ====计算四个方向的灰度变化平方====
for x=1+n:X-nfor y=1+n:Y-nwindow=img(x-n:x+n,y-n:y+n);%窗口为5*5V=zeros(1,4);for i=2:2*n+1        %垂直,水平,对角,反对角四个方向领域灰度差的平方和V(1)=V(1)+(window(i,n+1)-window(i-1,n+1))^2;%垂直V(2)=V(2)+(window(n+1,i)-window(n+1,i-1))^2;%水平V(3)=V(3)+(window(i,i)-window(i-1,i-1))^2;%正对角线V(4)=V(4)+(window(i,(2*n+1)-(i-1))-window(i-1,(2*n+1)-(i-2)))^2;%反对角线endIV=min(V);          %四个方向中选最小值imgn(x,y)=IV;      end
end% =====设定阈值T,>=T为兴趣点(潜在角点)====
T=2000; % 阈值
ind=find(imgn<T);
imgn(ind)=0;imshow(img2);hold on;title('Moravec算子提取');
m=3;
count = 0;
% ====非极大值抑制====
for x=1+m:X-m           %选局部最大(窗口为11*11)且非零值作为特征点for y=1+m:Y-mwindow2=imgn(x-m:x+m,y-m:y+m);if max(window2(:))==imgn(x,y) && imgn(x,y)~=0plot(y,x,'+','color','g');count=count+1; endend
end

这篇关于计算机视觉与模式识别实验2-1 角点检测算法(Harris,SUSAN,Moravec)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1028790

相关文章

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

无法启动此程序因为计算机丢失api-ms-win-core-path-l1-1-0.dll修复方案

《无法启动此程序因为计算机丢失api-ms-win-core-path-l1-1-0.dll修复方案》:本文主要介绍了无法启动此程序,详细内容请阅读本文,希望能对你有所帮助... 在计算机使用过程中,我们经常会遇到一些错误提示,其中之一就是"api-ms-win-core-path-l1-1-0.dll丢失

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.