基于安卓的虫害识别软件设计--(2)模型性能可视化|混淆矩阵、热力图

本文主要是介绍基于安卓的虫害识别软件设计--(2)模型性能可视化|混淆矩阵、热力图,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.混淆矩阵(Confusion Matrix)

1.1基础理论

(1)在机器学习、深度学习领域中,混淆矩阵常用于监督学习,匹配矩阵常用于无监督学习。主要用来比较分类结果和实际预测值。

(2)图中表达的含义:混淆矩阵的每一列代表了预测类别,每一行代表了数据的真实类别。

1.2 实现代码

import torch
import os
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix
import seaborn as sns
from torchvision import transformsclasses = ['bai_xing_hua_jin_gui', 'beetle', 'chui_mian_jie', 'ci_e_ke', 'da_qing_ye_chan','dou_yuan_jing','fan_qie_qian_ye_ying_larva','fan_qie_qian_ye_ying_mature','hong_zhi_zhu','huang_zong_ke']# classes = ['白星化金龟', '甲虫', '吹绵蚧', '刺蛾科', '大青叶蝉','豆芫菁','番茄潜叶蛾幼虫','番茄潜叶蛾成虫','红蜘蛛','蝗总科']def predict_image(model, image_path, true_label):device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")img = Image.open(image_path)val_transform = transforms.Compose([transforms.Resize((224, 224)),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])tensor_img = val_transform(img)tensor_img = tensor_img.to(device)tensor_img = tensor_img.unsqueeze(0)output = model(tensor_img)_, pred = output.max(1)pred_label = classes[pred.item()]return pred_label, true_labelif __name__ == '__main__':# 1. 加载模型model_path = r"/kaggle/input/mymodel3/resnet101_final.pth"model = torch.load(model_path)model.eval()# 2. 预测多张图片并记录真实标签和预测结果true_labels = []pred_labels = []images_dir = r"/kaggle/input/insects-new/validation"for label in os.listdir(images_dir):label_dir = os.path.join(images_dir, label)if not os.path.isdir(label_dir):continuefor img_name in os.listdir(label_dir):img_path = os.path.join(label_dir, img_name)true_labels.append(label)pred_label, _ = predict_image(model, img_path, label)pred_labels.append(pred_label)# 3. 计算混淆矩阵cm = confusion_matrix(true_labels, pred_labels, labels=classes)# 4. 计算归一化的混淆矩阵cm_normalized = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]# 5. 绘制混淆矩阵save_path = "/kaggle/working/confusion_matrix.png"plt.figure(figsize=(8, 6))sns.heatmap(cm_normalized, annot=True, cmap='Blues', xticklabels=classes, yticklabels=classes, fmt='.2f')plt.xlabel('预测标签')plt.ylabel('真实标签')plt.tight_layout()  # 自动调整子图参数plt.savefig(save_path)plt.show()

注意:以下数值需要和训练时的数值一样!


2.热力图

import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
import torch
from torchcam.methods import GradCAMpp
# CAM GradCAM GradCAMpp ISCAM LayerCAM SSCAM ScoreCAM SmoothGradCAMpp XGradCAM
from torchvision import transforms
from torchcam.utils import overlay_mask# 有 GPU 就用 GPU,没有就用 CPU
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print('device', device)model = torch.load('/kaggle/input/mymodel3/resnet101_final.pth')
model = model.eval().to(device)cam_extractor = GradCAMpp(model)# 要与训练集保持一致
test_transform = transforms.Compose([transforms.RandomResizedCrop(224),transforms.RandomHorizontalFlip(),transforms.RandomVerticalFlip(),transforms.RandomGrayscale(),transforms.ToTensor(),transforms.RandomErasing(),transforms.Normalize([0.460, 0.483, 0.396], [0.171, 0.150, 0.190])])# 载入目标图像
img_path = '/kaggle/input/insects-new/train/hong_zhi_zhu/13845.jpg'
img_pil = Image.open(img_path)
input_tensor = test_transform(img_pil).unsqueeze(0).to(device) # 预处理
# 预测标签
pred_logits = model(input_tensor)
pred_id = torch.topk(pred_logits, 1)[1].detach().cpu().numpy().squeeze().item()activation_map = cam_extractor(pred_id, pred_logits)
activation_map = activation_map[0][0].detach().cpu().numpy()
# 矩阵热力图
plt.imshow(activation_map)
plt.show()
plt.savefig('/kaggle/working/activation_map.png')# 将原图重合
result = overlay_mask(img_pil, Image.fromarray(activation_map), alpha=0.7)
result.save('/kaggle/working/result.png')result

 

这篇关于基于安卓的虫害识别软件设计--(2)模型性能可视化|混淆矩阵、热力图的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1024546

相关文章

Python实现数据可视化图表生成(适合新手入门)

《Python实现数据可视化图表生成(适合新手入门)》在数据科学和数据分析的新时代,高效、直观的数据可视化工具显得尤为重要,下面:本文主要介绍Python实现数据可视化图表生成的相关资料,文中通过... 目录前言为什么需要数据可视化准备工作基本图表绘制折线图柱状图散点图使用Seaborn创建高级图表箱线图热

Java慢查询排查与性能调优完整实战指南

《Java慢查询排查与性能调优完整实战指南》Java调优是一个广泛的话题,它涵盖了代码优化、内存管理、并发处理等多个方面,:本文主要介绍Java慢查询排查与性能调优的相关资料,文中通过代码介绍的非... 目录1. 事故全景:从告警到定位1.1 事故时间线1.2 关键指标异常1.3 排查工具链2. 深度剖析:

深入解析Java NIO在高并发场景下的性能优化实践指南

《深入解析JavaNIO在高并发场景下的性能优化实践指南》随着互联网业务不断演进,对高并发、低延时网络服务的需求日益增长,本文将深入解析JavaNIO在高并发场景下的性能优化方法,希望对大家有所帮助... 目录简介一、技术背景与应用场景二、核心原理深入分析2.1 Selector多路复用2.2 Buffer

基于Python Playwright进行前端性能测试的脚本实现

《基于PythonPlaywright进行前端性能测试的脚本实现》在当今Web应用开发中,性能优化是提升用户体验的关键因素之一,本文将介绍如何使用Playwright构建一个自动化性能测试工具,希望... 目录引言工具概述整体架构核心实现解析1. 浏览器初始化2. 性能数据收集3. 资源分析4. 关键性能指

Zabbix在MySQL性能监控方面的运用及最佳实践记录

《Zabbix在MySQL性能监控方面的运用及最佳实践记录》Zabbix通过自定义脚本和内置模板监控MySQL核心指标(连接、查询、资源、复制),支持自动发现多实例及告警通知,结合可视化仪表盘,可有效... 目录一、核心监控指标及配置1. 关键监控指标示例2. 配置方法二、自动发现与多实例管理1. 实践步骤

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、

MySQL 多列 IN 查询之语法、性能与实战技巧(最新整理)

《MySQL多列IN查询之语法、性能与实战技巧(最新整理)》本文详解MySQL多列IN查询,对比传统OR写法,强调其简洁高效,适合批量匹配复合键,通过联合索引、分批次优化提升性能,兼容多种数据库... 目录一、基础语法:多列 IN 的两种写法1. 直接值列表2. 子查询二、对比传统 OR 的写法三、性能分析

Linux系统性能检测命令详解

《Linux系统性能检测命令详解》本文介绍了Linux系统常用的监控命令(如top、vmstat、iostat、htop等)及其参数功能,涵盖进程状态、内存使用、磁盘I/O、系统负载等多维度资源监控,... 目录toppsuptimevmstatIOStatiotopslabtophtopdstatnmon

Python中图片与PDF识别文本(OCR)的全面指南

《Python中图片与PDF识别文本(OCR)的全面指南》在数据爆炸时代,80%的企业数据以非结构化形式存在,其中PDF和图像是最主要的载体,本文将深入探索Python中OCR技术如何将这些数字纸张转... 目录一、OCR技术核心原理二、python图像识别四大工具库1. Pytesseract - 经典O

Python基于微信OCR引擎实现高效图片文字识别

《Python基于微信OCR引擎实现高效图片文字识别》这篇文章主要为大家详细介绍了一款基于微信OCR引擎的图片文字识别桌面应用开发全过程,可以实现从图片拖拽识别到文字提取,感兴趣的小伙伴可以跟随小编一... 目录一、项目概述1.1 开发背景1.2 技术选型1.3 核心优势二、功能详解2.1 核心功能模块2.