K近邻算法基础:KD树的操作

2024-05-29 10:38
文章标签 算法 基础 操作 近邻 kd

本文主要是介绍K近邻算法基础:KD树的操作,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Kd-树概念

Kd-树 其实是K-dimension tree的缩写,是对数据点在k维空间中划分的一种数据结构。其实,Kd-树是一种平衡二叉树。

举一示例:

假设有六个二维数据点 = {(2,3),(5,4),(9,6),(4,7),(8,1),(7,2)},数据点位于二维空间中。为了能有效的找到最近邻,Kd-树采用分而治之的思想,即将整个空间划分为几个小部分。六个二维数据点生成的Kd-树的图为:
                 

                2D 对应的kd的平面划分                                3D 对应的kd的平面划分

 

 

k-d树算法可以分为两大部分,一部分是有关k-d树本身这种数据结构建立的算法,另一部分是在建立的k-d树上如何进行最邻近查找的算法。

一 Kd-树的构建

Kd-树是一个二叉树,每个节点表示的是一个空间范围。下表表示的是Kd-树中每个节点中主要包含的数据结构。

Range域表示的是节点包含的空间范围。

Node-data域就是数据集中的某一个n维数据点。分割超面是通过数据点Node-Data并垂直于轴split的平面,分割超面将整个空间分割成两个子空间。

令split域的值为i,如果空间Range中某个数据点的第i维数据小于Node-Data[i],那么,它就属于该节点空间的左子空间,否则就属于右子空间。

Left,Right域分别表示由左子空间和右子空间空的数据点构成的Kd-树。

                             表1 k-d树中每个节点的数据类型
域名
数据类型
描述
Node-data
数据矢量
数据集中某个数据点,是n维矢量(这里也就是k维)
Range
空间矢量
该节点所代表的空间范围
split
整数
垂直于分割超平面的方向轴序号
Left
k-d树
由位于该节点分割超平面左子空间内所有数据点所构成的k-d树
Right
k-d树
由位于该节点分割超平面右子空间内所有数据点所构成的k-d树
parent
k-d树
父节点
从上面对k-d树节点的数据类型的描述可以看出构建k-d树是一个逐级展开的递归过程。下面是给出的是构建k-d树的伪码。

 

构建k-d树的算法实现
算法:构建k-d树(createKDTree)

输入:数据点集Data-set和其所在的空间Range
输出:Kd,类型为k-d tree
1、If Data-set为空,则返回空的k-d tree
2、调用节点生成程序:
(1)确定split域:对于所有描述子数据(特征矢量),统计它们在每个维上的数据方差。以SURF特征为例,描述子为64维,可计算64个方差。挑选出最大值,对应的维就是split域的值。数据方差大表明沿该坐标轴方向上的数据分散得比较开,在这个方向上进行数据分割有较好的分辨率;
(2)确定Node-data域:数据点集Data-set按其第split域的值排序。位于正中间的那个数据点被选为Node-data。此时新的Data-set' = Data-set\Node-data(除去其中Node-data这一点)。
3、dataleft = {d属于Data-set' && d[split] ≤ Node-data[split]}
Left_Range = {Range && dataleft} dataright = {d属于Data-set' && d[split] > Node-data[split]}
Right_Range = {Range && dataright}
4.、eft = 由(dataleft,Left_Range)建立的k-d tree,即递归调用createKDTree(dataleft,Left_
Range)。并设置left的parent域为Kd;
right = 由(dataright,Right_Range)建立的k-d tree,即调用createKDTree(dataright,Right_
Range)。并设置right的parent域为Kd。

构建k-d树算法举例

从上述举的实例来看,过程如下:
(1)确定:split 域=x,6个数据点在x,y 维度上的数据方差为39,28.63.在x轴方向上的方差大,所以split域值为x。

(2)确定:Node-Data=(7,2),根据x维上的值将数据排序,6个数据的中值为7,所以node-data域为数据点(7,2)。这样该节点的分割超面就是通过(7,2)并垂直于:split=x轴的直线x=7.

  (3)   确定:左子空间和右子空间,分割超面x=7将整个空间分为两部分。x<=7 为左子空间,包含节点(2,3),(5,4),(4,7),另一部分为右子空间。包含节点(9,6),(8,1)

这个构建过程是一个递归过程。重复上述过程,直至只包含一个节点。

 

如算法所述,k-d树的构建是一个递归的过程。然后对左子空间和右子空间内的数据重复根节点的过程就可以得到下一级子节点(5,4)和(9,6)(也就是左右子空间的'根'节点),同时将空间和数据集进一步细分。如此反复直到空间中只包含一个数据点,如图1所示。最后生成的k-d树如图2所示。

                             图1                                                                                                图2

 

二、构建完kd树之后,如今进行最近邻搜索呢?

KD树的查找算法:

在k-d树中进行数据的查找也是特征匹配的重要环节,其目的是检索在k-d树中与查询点距离最近的数据点。

这里先以一个简单的实例来描述最邻近查找的基本思路。

例一:查询的点(2.1,3.1)(较简单)。

1、如图3所示,星号表示要查询的点(2.1,3.1)。通过二叉搜索,顺着搜索路径很快就能找到最邻近的近似点,也就是叶子节点(2,3)。

2、而找到的叶子节点并不一定就是最邻近的,最邻近肯定距离查询点更近,应该位于以查询点为圆心通过叶子节点的圆域内

3、为了找到真正的最近邻,还需要进行'回溯'操作:

             算法沿搜索路径反向查找是否有距离查询点更近的数据点。

此例中先从(7,2)点开始进行二叉查找,然后到达(5,4),最后到达(2,3),此时搜索路径中的节点为<(7,2),(5,4),(2,3)>,

首先以(2,3)作为当前最近邻点,计算其到查询点(2.1,3.1)的距离为0.1414,

然后回溯到其父节点(5,4),并判断在该父节点的其他子节点空间中是否有距离查询点更近的数据点。以(2.1,3.1)为圆心,以0.1414为半径画圆,如图3所示。发现该圆并不和超平面y = 4交割,因此不用进入(5,4)节点右子空间中去搜索。

4、最后,再回溯到(7,2),以(2.1,3.1)为圆心,以0.1414为半径的圆更不会与x = 7超平面交割,因此不用进入(7,2)右子空间进行查找。至此,搜索路径中的节点已经全部回溯完,结束整个搜索,返回最近邻点(2,3),最近距离为0.1414。

                                      图3

例二:查找点为(2,4.5)(叫复杂一点)。

一个复杂点了例子如查找点为(2,4.5)。

1、同样先进行二叉查找,先从(7,2)查找到(5,4)节点,在进行查找时是由y = 4为分割超平面的,由于查找点为y值为4.5,因此进入右子空间查找到(4,7),形成搜索路径<(7,2),(5,4),(4,7)>,

2、取(4,7)为当前最近邻点,计算其与目标查找点的距离为3.202。然后回溯到(5,4),计算其与查找点之间的距离为3.041。

       ((4,7)与目标查找点的距离为3.202,而(5,4)与查找点之间的距离为3.041,所以(5,4)为查询点的最近点;)

3、以(2,4.5)为圆心,以3.041为半径作圆,如图4所示。可见该圆和y = 4超平面交割,所以需要进入(5,4)左子空间进行查找。此时需将(2,3)节点加入搜索路径中得<(7,2),(2,3)>。

4、回溯至(2,3)叶子节点,(2,3)距离(2,4.5)比(5,4)要近,所以最近邻点更新为(2,3),最近距离更新为1.5。

5、回溯至(7,2),以(2,4.5)为圆心1.5为半径作圆,并不和x = 7分割超平面交割,如图5所示。

至此,搜索路径回溯完。返回最近邻点(2,3),最近距离1.5。

                   图4                                                                         图5

 

k-d树查询算法的简要说明:

 

  • 从root节点开始,DFS搜索直到叶子节点,同时在stack中顺序存储已经访问的节点。
  • 如果搜索到叶子节点,当前的叶子节点被设为最近邻节点。
  • 然后通过stack回溯:
    如果当前点的距离比最近邻点距离近,更新最近邻节点.
    然后检查以最近距离为半径的圆是否和父节点的超平面相交.
    如果相交,则必须到父节点的另外一侧,用同样的DFS搜索法,开始检查最近邻节点。
    如果不相交,则继续往上回溯,而父节点的另一侧子节点都被淘汰,不再考虑的范围中.
  • 当搜索回到root节点时,搜索完成,得到最近邻节点。

     

    当然设计到KD树的操作还有插入和删除等,但是k近邻算法主要就是用到查找元素,这里就不再写了。

这篇关于K近邻算法基础:KD树的操作的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1013441

相关文章

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

使用Java填充Word模板的操作指南

《使用Java填充Word模板的操作指南》本文介绍了Java填充Word模板的实现方法,包括文本、列表和复选框的填充,首先通过Word域功能设置模板变量,然后使用poi-tl、aspose-words... 目录前言一、设置word模板普通字段列表字段复选框二、代码1. 引入POM2. 模板放入项目3.代码

利用Python操作Word文档页码的实际应用

《利用Python操作Word文档页码的实际应用》在撰写长篇文档时,经常需要将文档分成多个节,每个节都需要单独的页码,下面:本文主要介绍利用Python操作Word文档页码的相关资料,文中通过代码... 目录需求:文档详情:要求:该程序的功能是:总结需求:一次性处理24个文档的页码。文档详情:1、每个

Python内存管理机制之垃圾回收与引用计数操作全过程

《Python内存管理机制之垃圾回收与引用计数操作全过程》SQLAlchemy是Python中最流行的ORM(对象关系映射)框架之一,它提供了高效且灵活的数据库操作方式,本文将介绍如何使用SQLAlc... 目录安装核心概念连接数据库定义数据模型创建数据库表基本CRUD操作创建数据读取数据更新数据删除数据查

Go语言中json操作的实现

《Go语言中json操作的实现》本文主要介绍了Go语言中的json操作的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录 一、jsOChina编程N 与 Go 类型对应关系️ 二、基本操作:编码与解码 三、结构体标签(Struc

Spring的基础事务注解@Transactional作用解读

《Spring的基础事务注解@Transactional作用解读》文章介绍了Spring框架中的事务管理,核心注解@Transactional用于声明事务,支持传播机制、隔离级别等配置,结合@Tran... 目录一、事务管理基础1.1 Spring事务的核心注解1.2 注解属性详解1.3 实现原理二、事务事

Java 字符串操作之contains 和 substring 方法最佳实践与常见问题

《Java字符串操作之contains和substring方法最佳实践与常见问题》本文给大家详细介绍Java字符串操作之contains和substring方法最佳实践与常见问题,本文结合实例... 目录一、contains 方法详解1. 方法定义与语法2. 底层实现原理3. 使用示例4. 注意事项二、su

Java中最全最基础的IO流概述和简介案例分析

《Java中最全最基础的IO流概述和简介案例分析》JavaIO流用于程序与外部设备的数据交互,分为字节流(InputStream/OutputStream)和字符流(Reader/Writer),处理... 目录IO流简介IO是什么应用场景IO流的分类流的超类类型字节文件流应用简介核心API文件输出流应用文

Java Stream流与使用操作指南

《JavaStream流与使用操作指南》Stream不是数据结构,而是一种高级的数据处理工具,允许你以声明式的方式处理数据集合,类似于SQL语句操作数据库,本文给大家介绍JavaStream流与使用... 目录一、什么是stream流二、创建stream流1.单列集合创建stream流2.双列集合创建str