YOLOV8逐步分解(6)_模型训练初始设置之image size检测batch预设及dataloder初始化

本文主要是介绍YOLOV8逐步分解(6)_模型训练初始设置之image size检测batch预设及dataloder初始化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

yolov8逐步分解(1)--默认参数&超参配置文件加载

yolov8逐步分解(2)_DetectionTrainer类初始化过程

yolov8逐步分解(3)_trainer训练之模型加载

YOLOV8逐步分解(4)_模型的构建过程

YOLOV8逐步分解(5)_模型训练初始设置之混合精度训练AMP

        接逐步分解(5),继续模型训练初始设置的讲解,本章将讲解image size检测、batch预设及dataloder初始代码。

1. image size代码

        # Check imgszgs = max(int(self.model.stride.max() if hasattr(self.model, 'stride') else 32), 32)         # grid size (max stride)self.args.imgsz = check_imgsz(self.args.imgsz, stride=gs, floor=gs, max_dim=1)

这段代码是用来处理输入图像的尺寸(imgsz)。它的作用:

1.1 gs = max(int(self.model.stride.max() if hasattr(self.model, 'stride') else 32), 32):

        计算出模型的最大 stride 值。

        如果模型有 stride 属性,就取它的最大值;否则默认为 32。

        这个 gs 变量代表了模型的网格大小(grid size),它是用于确定输入图像尺寸的一个重要参数。

1.2 self.args.imgsz = check_imgsz(self.args.imgsz, stride=gs, floor=gs, max_dim=1):

        代码调用了 check_imgsz() 函数,用于检查和设置输入图像的尺寸。

        self.args.imgsz 是用户传入的期望输入图像尺寸。

        check_imgsz() 函数会根据模型的 stride 值和其他参数,对 self.args.imgsz 进行调整和验证。

        具体来说:

                stride=gs: 使用计算出的网格大小作为 stride 参数。

                floor=gs: 确保输入图像尺寸是网格大小的倍数。

                max_dim=1: 限制输入图像的最大维度为 1。

        这段代码的目的是确保输入图像的尺寸与模型的特性(如 stride)匹配,以确保模型能够正确地处理输入数据。这有助于提高模型的性能和稳定性。

2. batch size设置

        # Batch sizeif self.batch_size == -1: #表示批量大小需要自动估计if RANK == -1:  # single-GPU only, estimate best batch sizeself.args.batch = self.batch_size = check_train_batch_size(self.model, self.args.imgsz, self.amp)#估计最佳批量大小else:SyntaxError('batch=-1 to use AutoBatch is only available in Single-GPU training. ''Please pass a valid batch size value for Multi-GPU DDP training, i.e. batch=16')

处理训练时的批量大小(batch size):

2.1 if self.batch_size == -1::

        这个条件检查是否需要自动估计批量大小。

        如果 self.batch_size 为 -1,表示需要自动估计最佳批量大小。

2.2 if RANK == -1:

        这个条件检查当前是否处于单 GPU 训练模式。

        如果是单 GPU 训练,才能使用自动估计批量大小的功能。

2.3 self.args.batch = self.batch_size = check_train_batch_size(self.model, self.args.imgsz, self.amp):

        在单 GPU 训练模式下,代码调用 check_train_batch_size() 函数来估计最佳批量大小。

        这个函数会根据模型、输入图像尺寸和是否启用混合精度训练,来计算出最佳的批量大小。

        计算结果会赋值给 self.args.batch 和 self.batch_size。

2.4 如果不是单 GPU 训练模式(即分布式训练),就会抛出一个 SyntaxError 异常。

        异常信息提示用户,在分布式训练时不能使用自动批量大小估计功能,需要手动设置一个有效的批量大小。

        这段代码的目的是尽可能自动地估计出最佳的批量大小,以提高训练的效率和性能。但这个功能只在单 GPU 训练模式下可用,在分布式训练中需要手动设置批量大小。

3. dataloader 初始化

        # Dataloadersbatch_size = self.batch_size // max(world_size, 1)self.train_loader = self.get_dataloader(self.trainset, batch_size=batch_size, rank=RANK, mode='train')#获取训练集if RANK in (-1, 0):self.test_loader = self.get_dataloader(self.testset, batch_size=batch_size * 2, rank=-1, mode='val') #获取测试集self.validator = self.get_validator() #创建验证器(validator),用于评估模型在验证数据集上的性能。metric_keys = self.validator.metrics.keys + self.label_loss_items(prefix='val')self.metrics = dict(zip(metric_keys, [0] * len(metric_keys)))  # TODO: init metrics for plot_results()?self.ema = ModelEMA(self.model)if self.args.plots and not self.args.v5loader: #如果 self.args.plots 为真且 self.args.v5loader 为假self.plot_training_labels() #绘制训练标签的图表

设置和获取训练集和测试集的数据加载器(dataloader):

3.1 batch_size = self.batch_size // max(world_size, 1):

        这一行代码计算出每个进程(process)使用的批量大小。

        它将 self.batch_size 除以 world_size (分布式训练时的进程数)或 1(单机训练时)。

        这样做是为了确保在分布式训练时,每个进程使用的批量大小是合理的。

3.2 self.train_loader = self.get_dataloader(self.trainset, batch_size=batch_size, rank=RANK, mode='train'):

        这一行代码通过调用 self.get_dataloader() 函数,获取训练数据集的数据加载器。

        self.trainset 是训练数据集,batch_size 是计算出的批量大小,rank 是当前进程的序号(在分布式训练时使用)。

        mode='train' 表示这是用于训练的数据加载器。

3.3 if RANK in (-1, 0)::

        这个条件检查当前是否处于单机训练模式或主进程(rank 为 0)。

        只有在这些情况下,才会执行以下操作。

3.4 self.test_loader = self.get_dataloader(self.testset, batch_size=batch_size * 2, rank=-1, mode='val'):

        这一行代码获取验证数据集的数据加载器。

        self.testset 是验证数据集,批量大小是训练批量大小的两倍,rank 设置为 -1 表示不参与分布式训练。

        mode='val' 表示这是用于验证的数据加载器。

3.5 self.validator = self.get_validator():

        这一行代码创建了一个验证器(validator)对象,用于评估模型在验证数据集上的性能。

3.6 metric_keys = self.validator.metrics.keys + self.label_loss_items(prefix='val'):

        这一行代码获取验证阶段需要的所有度量指标的键(key)。

3.7 self.validator.metrics.keys 是验证器定义的度量指标,self.label_loss_items(prefix='val') 是验证阶段的标签损失项。

3.8 self.metrics = dict(zip(metric_keys, [0] * len(metric_keys))):

        这一行代码初始化了所有度量指标的值为 0。

3.9 self.ema = ModelEMA(self.model):

        这一行代码创建了一个指数移动平均(EMA)模型,用于在训练过程中保存模型的滚动平均值。

3.10 if self.args.plots and not self.args.v5loader: self.plot_training_labels():

        如果需要绘制训练标签的图表,并且不使用 v5 格式的数据加载器,就会调用 self.plot_training_labels() 函数。

        这段代码的主要目的是设置训练集和验证集的数据加载器,创建验证器,初始化度量指标,以及设置 EMA 模型等。这些都是训练模型时的常见操作。

这篇关于YOLOV8逐步分解(6)_模型训练初始设置之image size检测batch预设及dataloder初始化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1008957

相关文章

C++类和对象之初始化列表的使用方式

《C++类和对象之初始化列表的使用方式》:本文主要介绍C++类和对象之初始化列表的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C++初始化列表详解:性能优化与正确实践什么是初始化列表?初始化列表的三大核心作用1. 性能优化:避免不必要的赋值操作2. 强

SpringIOC容器Bean初始化和销毁回调方式

《SpringIOC容器Bean初始化和销毁回调方式》:本文主要介绍SpringIOC容器Bean初始化和销毁回调方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录前言1.@Bean指定初始化和销毁方法2.实现接口3.使用jsR250总结前言Spring Bea

Spring实现Bean的初始化和销毁的方式

《Spring实现Bean的初始化和销毁的方式》:本文主要介绍Spring实现Bean的初始化和销毁的方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Bean的初始化二、Bean的销毁总结在前面的章节当中介绍完毕了ApplicationContext,也就

CentOS和Ubuntu系统使用shell脚本创建用户和设置密码

《CentOS和Ubuntu系统使用shell脚本创建用户和设置密码》在Linux系统中,你可以使用useradd命令来创建新用户,使用echo和chpasswd命令来设置密码,本文写了一个shell... 在linux系统中,你可以使用useradd命令来创建新用户,使用echo和chpasswd命令来设

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

SpringBoot项目中报错The field screenShot exceeds its maximum permitted size of 1048576 bytes.的问题及解决

《SpringBoot项目中报错ThefieldscreenShotexceedsitsmaximumpermittedsizeof1048576bytes.的问题及解决》这篇文章... 目录项目场景问题描述原因分析解决方案总结项目场景javascript提示:项目相关背景:项目场景:基于Spring

Java数组初始化的五种方式

《Java数组初始化的五种方式》数组是Java中最基础且常用的数据结构之一,其初始化方式多样且各具特点,本文详细讲解Java数组初始化的五种方式,分析其适用场景、优劣势对比及注意事项,帮助避免常见陷阱... 目录1. 静态初始化:简洁但固定代码示例核心特点适用场景注意事项2. 动态初始化:灵活但需手动管理代

QT进行CSV文件初始化与读写操作

《QT进行CSV文件初始化与读写操作》这篇文章主要为大家详细介绍了在QT环境中如何进行CSV文件的初始化、写入和读取操作,本文为大家整理了相关的操作的多种方法,希望对大家有所帮助... 目录前言一、CSV文件初始化二、CSV写入三、CSV读取四、QT 逐行读取csv文件五、Qt如何将数据保存成CSV文件前言

C++中初始化二维数组的几种常见方法

《C++中初始化二维数组的几种常见方法》本文详细介绍了在C++中初始化二维数组的不同方式,包括静态初始化、循环、全部为零、部分初始化、std::array和std::vector,以及std::vec... 目录1. 静态初始化2. 使用循环初始化3. 全部初始化为零4. 部分初始化5. 使用 std::a

C#TextBox设置提示文本方式(SetHintText)

《C#TextBox设置提示文本方式(SetHintText)》:本文主要介绍C#TextBox设置提示文本方式(SetHintText),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录C#TextBox设置提示文本效果展示核心代码总结C#TextBox设置提示文本效果展示核心代