应用爬山算法做文本数据的挖掘和分析

2024-05-27 00:12

本文主要是介绍应用爬山算法做文本数据的挖掘和分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

       爬山算法是一种启发式搜索算法,用于求解优化问题。它从一个初始解开始,逐步通过比较当前解与其邻域解的优劣来选择下一个可能更优的解,直到达到一个局部最优解或者无法进一步改进为止。爬山算法的核心思想是“贪心”,即每一步都选择能使目标函数值增加最多的方向前进。

基本原理

爬山算法从一个随机选定的点开始,然后在每一步中选择当前点的邻居中能最大化目标函数的点作为新的当前点。这个过程会一直持续,直到达到一个局部最大值,即周围的邻居都没有比当前点更好的解。

优缺点

  • 优点
    • 简单易实现:算法逻辑简单,容易编码实现。
    • 计算效率高:在合适的问题上能快速找到解。
  • 缺点
    • 容易陷入局部最优:由于算法本质上是贪心的,容易在复杂的搜索空间中陷入局部最优。
    • 对初始解敏感:算法的最终结果很大程度上取决于初始解的选取。

写一个爬山算法应用在文本数据的挖掘和分析,如关键词提取和信息检索的小例子。

package mainimport ("fmt""github.com/yanyiwu/gojieba""math""math/rand""sort""strings""time"
)// 文档集合
var documents = []string{"我爱北京天安门","北京天安门上太阳升","伟大领袖毛主席","指引我们向前进",
}// 预先分词并存储结果
var tokenizedDocs [][]stringfunc init() {seg := gojieba.NewJieba()tokenizedDocs = make([][]string, len(documents))for i, doc := range documents {tokenizedDocs[i] = seg.Cut(doc, true)}
}// 计算TF-IDF值
func calculateTFIDF(word string, docs [][]string) float64 {// 计算词频(TF)tf := float64(countOccurrences(word, docs)) / float64(len(docs))// 计算逆文档频率(IDF)idf := math.Log(float64(len(docs)) / float64(countDocumentsWithWord(word, docs)))// 计算TF-IDFreturn tf * idf
}// 统计单词在所有文档中出现的次数
func countOccurrences(word string, docs [][]string) int {count := 0for _, words := range docs {for _, w := range words {if w == word {count++}}}return count
}// 统计包含特定单词的文档数量
func countDocumentsWithWord(word string, docs [][]string) int {count := 0for _, words := range docs {for _, w := range words {if w == word {count++break}}}return count
}// 爬山算法
func hillClimbing(docs [][]string, maxIterations int) []string {// 获取所有唯一的单词uniqueWords := getUniqueWords(docs)// 随机选择一组初始关键词currentKeywords := getRandomKeywords(uniqueWords, 5)for i := 0; i < maxIterations; i++ {// 计算当前关键词集的TF-IDF总和currentScore := 0.0for _, keyword := range currentKeywords {currentScore += calculateTFIDF(keyword, docs)}// 尝试替换一个关键词for j := 0; j < len(currentKeywords); j++ {newKeywords := make([]string, len(currentKeywords))copy(newKeywords, currentKeywords)newKeywords[j] = uniqueWords[rand.Intn(len(uniqueWords))]// 计算新关键词集的TF-IDF总和newScore := 0.0for _, keyword := range newKeywords {newScore += calculateTFIDF(keyword, docs)}// 如果新关键词集更好,则更新当前关键词集if newScore > currentScore {currentKeywords = newKeywordsbreak}}}return currentKeywords
}// 获取所有文档中的唯一单词
func getUniqueWords(docs [][]string) []string {uniqueWordsMap := make(map[string]struct{})for _, words := range docs {for _, word := range words {uniqueWordsMap[word] = struct{}{}}}uniqueWords := make([]string, 0, len(uniqueWordsMap))for word := range uniqueWordsMap {uniqueWords = append(uniqueWords, word)}return uniqueWords
}// 从唯一单词中随机选择指定数量的关键词
func getRandomKeywords(uniqueWords []string, numKeywords int) []string {if numKeywords > len(uniqueWords) {numKeywords = len(uniqueWords)}keywords := make([]string, numKeywords)perm := rand.Perm(len(uniqueWords))for i := 0; i < numKeywords; i++ {keywords[i] = uniqueWords[perm[i]]}return keywords
}func main() {// 初始化随机种子rand.Seed(time.Now().UnixNano())// 运行爬山算法bestKeywords := hillClimbing(tokenizedDocs, 1000)// 输出结果fmt.Printf("Best keywords found: %v\n", bestKeywords)
}

代码逻辑:

  1. 爬山算法 hillClimbing()‌:

    • 获取所有唯一的单词。
    • 随机选择一组初始关键词。
    • 对于指定的迭代次数:
      • 计算当前关键词集的TF-IDF总和。
      • 尝试替换一个关键词。
      • 如果新关键词集的TF-IDF总和更高,则更新当前关键词集。
    • 返回最终的关键词集。
  2. 辅助函数

    • calculateTFIDF():计算给定单词的TF-IDF值。
    • countOccurrences():统计单词在所有文档中出现的次数。
    • countDocumentsWithWord():统计包含特定单词的文档数量。
    • getUniqueWords():获取所有文档中的唯一单词。
    • getRandomKeywords():从唯一单词中随机选择指定数量的关键词。  

运行结果:

Best keywords found: [爱 前进 太阳升 向 我们]

这篇关于应用爬山算法做文本数据的挖掘和分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1005982

相关文章

Java集成Onlyoffice的示例代码及场景分析

《Java集成Onlyoffice的示例代码及场景分析》:本文主要介绍Java集成Onlyoffice的示例代码及场景分析,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 需求场景:实现文档的在线编辑,团队协作总结:两个接口 + 前端页面 + 配置项接口1:一个接口,将o

Python Flask 库及应用场景

《PythonFlask库及应用场景》Flask是Python生态中​轻量级且高度灵活的Web开发框架,基于WerkzeugWSGI工具库和Jinja2模板引擎构建,下面给大家介绍PythonFl... 目录一、Flask 库简介二、核心组件与架构三、常用函数与核心操作 ​1. 基础应用搭建​2. 路由与参

Spring Boot中的YML配置列表及应用小结

《SpringBoot中的YML配置列表及应用小结》在SpringBoot中使用YAML进行列表的配置不仅简洁明了,还能提高代码的可读性和可维护性,:本文主要介绍SpringBoot中的YML配... 目录YAML列表的基础语法在Spring Boot中的应用从YAML读取列表列表中的复杂对象其他注意事项总

IDEA下"File is read-only"可能原因分析及"找不到或无法加载主类"的问题

《IDEA下Fileisread-only可能原因分析及找不到或无法加载主类的问题》:本文主要介绍IDEA下Fileisread-only可能原因分析及找不到或无法加载主类的问题,具有很好的参... 目录1.File is read-only”可能原因2.“找不到或无法加载主类”问题的解决总结1.File

8种快速易用的Python Matplotlib数据可视化方法汇总(附源码)

《8种快速易用的PythonMatplotlib数据可视化方法汇总(附源码)》你是否曾经面对一堆复杂的数据,却不知道如何让它们变得直观易懂?别慌,Python的Matplotlib库是你数据可视化的... 目录引言1. 折线图(Line Plot)——趋势分析2. 柱状图(Bar Chart)——对比分析3

Spring Boot 整合 Redis 实现数据缓存案例详解

《SpringBoot整合Redis实现数据缓存案例详解》Springboot缓存,默认使用的是ConcurrentMap的方式来实现的,然而我们在项目中并不会这么使用,本文介绍SpringB... 目录1.添加 Maven 依赖2.配置Redis属性3.创建 redisCacheManager4.使用Sp

电脑系统Hosts文件原理和应用分享

《电脑系统Hosts文件原理和应用分享》Hosts是一个没有扩展名的系统文件,当用户在浏览器中输入一个需要登录的网址时,系统会首先自动从Hosts文件中寻找对应的IP地址,一旦找到,系统会立即打开对应... Hosts是一个没有扩展名的系统文件,可以用记事本等工具打开,其作用就是将一些常用的网址域名与其对应

CSS 样式表的四种应用方式及css注释的应用小结

《CSS样式表的四种应用方式及css注释的应用小结》:本文主要介绍了CSS样式表的四种应用方式及css注释的应用小结,本文通过实例代码给大家介绍的非常详细,详细内容请阅读本文,希望能对你有所帮助... 一、外部 css(推荐方式)定义:将 CSS 代码保存为独立的 .css 文件,通过 <link> 标签

Dubbo之SPI机制的实现原理和优势分析

《Dubbo之SPI机制的实现原理和优势分析》:本文主要介绍Dubbo之SPI机制的实现原理和优势,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Dubbo中SPI机制的实现原理和优势JDK 中的 SPI 机制解析Dubbo 中的 SPI 机制解析总结Dubbo中

Python Pandas高效处理Excel数据完整指南

《PythonPandas高效处理Excel数据完整指南》在数据驱动的时代,Excel仍是大量企业存储核心数据的工具,Python的Pandas库凭借其向量化计算、内存优化和丰富的数据处理接口,成为... 目录一、环境搭建与数据读取1.1 基础环境配置1.2 数据高效载入技巧二、数据清洗核心战术2.1 缺失