算法导论--第15章 动态规划--钢条切割

2024-05-24 22:32

本文主要是介绍算法导论--第15章 动态规划--钢条切割,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

算法导论

--第15章 动态规划

动态规划:通过组合子问题的解来求解原问题,应用于子问题重叠的情况,即不同的子问题具有公共的子子问题。

设计动态规划算法的步骤:

①   刻画一个最优解的结构特征。

②   递归定义最优解的值。

③   计算最优解的值,通常采用自底向上的方法。

④   利用计算处的信息构造一个最优解。

 

 

15.1 钢条切割

 钢条切割问题:给定一段长度为n英寸的钢条和一个价格表 (i=1,2, …,n),求切割钢条的方案,使得销售收益 最大。注意,如果长度为n英寸的钢条价格  足够大,最饥饿可能就是完全不需要切割。

若钢条的长度为i,则钢条的价格为Pi,如何对给定长度的钢条进行切割能得到最大收益?

长度i    1    2    3   4     5      6      7     8      9      10

价格Pi    1    5    8   9     10    17   17   20    14    30

 

i = 1时,钢条不可切割,r[1]= 1

i = 2时,钢条可分割为1+ 1,其价格为2。若不分割(0 + 2),价格为5。即r[2] = 5

i = 3时,钢条可分割为0+ 3, 1 + 2。r[3] = 8

同理可得:

r[4] = 10(2+ 2)

r[5] = 13(2+ 3)

r[6] = 17(0+ 6)

r[7] = 18(1+ 6或4+ 3=> 2 + 2 + 3

.......

 

我们可以发现,长度为7时,将其切割为长度4与长度3的钢条,并对两个钢条分别求最优解:长度4的最优解为r[4] = 10(2 + 2),长度3的最优解为r[3] = 8,即可得r[7] =r[4]+ r[3] =>原问题的最优解等于子问题的最优解之和的最大值

 我们将钢条左边切割下长度为 i 的一段,只对右边剩下的长度为 n-i 的一段继续进行切割(递归求解),对左边的一段不再进行切割。即问题分解的方式为:将长度为n 的钢条分解为左边开始一段,以及剩余部分继续分解的结果。这样,不做任何切割的方案就可以描述为:第一段的长度为n ,收益为 pn,剩余部分长度为0,对应的收益为r0=0。于是公式的简化版本:

因此,在计算r[i]时,所求值即为r[0] +r[i],r[1]+ r[i- 1],r[2]+ r[i- 2],...  ,r[i- 1] +r[1] 之间的最大值,而在动态规划中,r[0]——r[i - 1]的值在计算r[i]之前已经保存好了,进行少量的运算便能取得最优结果。

codes:

#include<iostream>
#include<cstring>
using namespace std;
int p[1000],r[1000],s[1000];
void cut_rod(int* a,int b)
{r[0]=0;for(int i=1;i<=b;i++){int q=-1e8;for(int j=1;j<=i;j++){if(q<(a[j]+r[i-j])){q=a[j]+r[i-j];s[i]=j;r[i]=q;}}}cout<<r[b]<<endl<<s[b]<<endl;
}
int main()
{int n;cin>>n;memset(p,0,sizeof(p));memset(r,0,sizeof(r));memset(s,0,sizeof(s));for(int i=1;i<=n;i++)cin>>p[i];cut_rod(p,n);return 0;
}


这篇关于算法导论--第15章 动态规划--钢条切割的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/999715

相关文章

PowerShell中15个提升运维效率关键命令实战指南

《PowerShell中15个提升运维效率关键命令实战指南》作为网络安全专业人员的必备技能,PowerShell在系统管理、日志分析、威胁检测和自动化响应方面展现出强大能力,下面我们就来看看15个提升... 目录一、PowerShell在网络安全中的战略价值二、网络安全关键场景命令实战1. 系统安全基线核查

一文详解SpringBoot中控制器的动态注册与卸载

《一文详解SpringBoot中控制器的动态注册与卸载》在项目开发中,通过动态注册和卸载控制器功能,可以根据业务场景和项目需要实现功能的动态增加、删除,提高系统的灵活性和可扩展性,下面我们就来看看Sp... 目录项目结构1. 创建 Spring Boot 启动类2. 创建一个测试控制器3. 创建动态控制器注

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

springboot如何通过http动态操作xxl-job任务

《springboot如何通过http动态操作xxl-job任务》:本文主要介绍springboot如何通过http动态操作xxl-job任务的问题,具有很好的参考价值,希望对大家有所帮助,如有错... 目录springboot通过http动态操作xxl-job任务一、maven依赖二、配置文件三、xxl-

Java调用C#动态库的三种方法详解

《Java调用C#动态库的三种方法详解》在这个多语言编程的时代,Java和C#就像两位才华横溢的舞者,各自在不同的舞台上展现着独特的魅力,然而,当它们携手合作时,又会碰撞出怎样绚丽的火花呢?今天,我们... 目录方法1:C++/CLI搭建桥梁——Java ↔ C# 的“翻译官”步骤1:创建C#类库(.NET

MyBatis编写嵌套子查询的动态SQL实践详解

《MyBatis编写嵌套子查询的动态SQL实践详解》在Java生态中,MyBatis作为一款优秀的ORM框架,广泛应用于数据库操作,本文将深入探讨如何在MyBatis中编写嵌套子查询的动态SQL,并结... 目录一、Myhttp://www.chinasem.cnBATis动态SQL的核心优势1. 灵活性与可

Mybatis嵌套子查询动态SQL编写实践

《Mybatis嵌套子查询动态SQL编写实践》:本文主要介绍Mybatis嵌套子查询动态SQL编写方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、实体类1、主类2、子类二、Mapper三、XML四、详解总结前言MyBATis的xml文件编写动态SQL

SpringBoot实现Kafka动态反序列化的完整代码

《SpringBoot实现Kafka动态反序列化的完整代码》在分布式系统中,Kafka作为高吞吐量的消息队列,常常需要处理来自不同主题(Topic)的异构数据,不同的业务场景可能要求对同一消费者组内的... 目录引言一、问题背景1.1 动态反序列化的需求1.2 常见问题二、动态反序列化的核心方案2.1 ht

golang实现动态路由的项目实践

《golang实现动态路由的项目实践》本文主要介绍了golang实现动态路由项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习... 目录一、动态路由1.结构体(数据库的定义)2.预加载preload3.添加关联的方法一、动态路由1

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.