【低照度图像增强系列(7)】RDDNet算法详解与代码实现(同济大学|ICME)

本文主要是介绍【低照度图像增强系列(7)】RDDNet算法详解与代码实现(同济大学|ICME),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

☀️ 在低照度场景下进行目标检测任务,常存在图像RGB特征信息少提取特征困难目标识别和定位精度低等问题,给检测带来一定的难度。

     🌻使用图像增强模块对原始图像进行画质提升,恢复各类图像信息,再使用目标检测网络对增强图像进行特定目标检测,有效提高检测的精确度。

      ⭐本专栏会介绍传统方法、Retinex、EnlightenGAN、SCI、Zero-DCE、IceNet、RRDNet、URetinex-Net等低照度图像增强算法。

👑完整代码已打包上传至资源→低照度图像增强代码汇总

目录

前言

🚀一、RDDNet介绍 

☀️1.1 RDDNet简介   

研究背景 

算法框架 

损失函数

🚀二、RDDNet核心代码

 ☀️2.1 网络模型—RRDNet.py

 ☀️2.2 损失函数—loss_functions.py

(1)重构损失——reconstruction_loss

(2)光照损失——illumination_smooth_loss

(3)反射损失——reflectance_smooth_loss

(4)噪声损失——noise_loss

  ☀️2.3 Retinex操作—pipline.py

🚀三、RDDNet代码复现

☀️3.1 环境配置

☀️3.2 运行过程

☀️3.3 运行效果

 

🚀一、RDDNet介绍 

学习资料:

  • 论文题目:《ZERO-SHOT RESTORATION OF UNDEREXPOSED IMAGES VIA ROBUST RETINEX DECOMPOS》(通过鲁棒性 Retinex 分解对曝光不足的图像进行零样本恢复)
  • 论文讲解:ICME| RRDNet《ZERO-SHOT RESTORATION OF UNDEREXPOSED IMAGES VIA ROBUST RETINEX DECOMPOS》论文超详细解读(翻译+精读)
  • 原文地址:Zero-Shot Restoration of Underexposed Images via Robust Retinex Decomposition | IEEE Conference Publication | IEEE Xplore
  • 源码地址:代码export.arxiv.org/pdf/2109.05838v2.pdf

☀️1.1 RDDNet简介   

RRDNet同济大学在2020年提出来的一种新的三分支全卷积神经网络,认为图像由三部分构成:光照分量反射分量噪声分量。在没有pair对的情况下实现低光图像增强,通过对loss进行迭代来有效估计出噪声和恢复光照。 

研究背景 

  • 曝光不足的图像由于能见度差和黑暗中的潜在噪声,通常会出现严重的质量下降。
  • 现有的图像增强方法忽略了噪声,因此使用带噪声分量的Retinex模型作为基础。
  • 基于学习(数据驱动)的方法限制了模型的泛化能力,因此提出zero-shot的学习模式。

算法框架 

  1. 通过三分支网络把输入图像分解为反射图、光照图和噪声图三个分量。
  2. 通过Gamma变换调整光照图,再计算得到无噪声的反射图。
  3. 结合光照图和反射图,重构得到最终结果。 

损失函数

1. Retinex重构损失,取最大通道值作为初始光照图,用来约束光照图。在光照图的基础上约束反射图和噪声。

2. 纹理增强损失,通过平滑光照图可以帮助增强反射图的纹理。具体损失公式是带有权重的总变分损失,权重的设计规则是,梯度大的地方权重小,即权重与梯度成负相关即可,这里是将梯度经过高斯滤波放在分母。

3. 光照指导的噪声损失,根据噪声随着光照的变大而变大的假设,可以使用光照图来做权重指导,其次考虑两点:

(1)假定噪声范围限定

(2)通过平滑反射图来得到噪声,本身并没有直接得到噪声的损失,只是通过对反射图做总变分约束来去噪


🚀二、RDDNet核心代码

 代码框架如图所示:

(图片来源:【代码笔记】RRDNet 网络-CSDN博客 谢谢大佬!@chaiky) 

 ☀️2.1 网络模型—RRDNet.py

import torch
import torch.nn as nnclass RRDNet(nn.Module):def __init__(self):super(RRDNet, self).__init__()#----------- 1.illumination(光照估计)---------------------------#self.illumination_net = nn.Sequential(nn.Conv2d(3, 16, 3, 1, 1),nn.ReLU(),nn.Conv2d(16, 32, 3, 1, 1),nn.ReLU(),nn.Conv2d(32, 64, 3, 1, 1),nn.ReLU(),nn.Conv2d(64, 32, 3, 1, 1),nn.ReLU(),nn.Conv2d(32, 1, 3, 1, 1),)#----------- 2.reflectance(反射率估计)---------------------------#self.reflectance_net = nn.Sequential(nn.Conv2d(3, 16, 3, 1, 1),nn.ReLU(),nn.Conv2d(16, 32, 3, 1, 1),nn.ReLU(),nn.Conv2d(32, 64, 3, 1, 1),nn.ReLU(),nn.Conv2d(64, 32, 3, 1, 1),nn.ReLU(),nn.Conv2d(32, 3, 3, 1, 1))#----------- 3.noise(噪声估计)---------------------------#self.noise_net = nn.Sequential(nn.Conv2d(3, 16, 3, 1, 1),nn.ReLU(),nn.Conv2d(16, 32, 3, 1, 1),nn.ReLU(),nn.Conv2d(32, 64, 3, 1, 1),nn.ReLU(),nn.Conv2d(64, 32, 3, 1, 1),nn.ReLU(),nn.Conv2d(32, 3, 3, 1, 1))def forward(self, input):illumination = torch.sigmoid(self.illumination_net(input))reflectance = torch.sigmoid(self.reflectance_net(input))noise = torch.tanh(self.noise_net(input))return illumination, reflectance, noise

  我们可以对照上图左边的结构来理解代码。

  • illumination_net:  主要是负责对输入图像进行处理以获取光照信息,包括一系列卷积层和ReLU激活函数,最终输出一个通道数为1的图像,表示光照强度

  • reflectance_net:  主要是负责提取输入图像的反射率信息,同样包括一系列卷积层和ReLU激活函数,最终输出一个通道数为3的图像,表示反射率在RGB通道上的分布。

  • noise_net:  主要是则用于估计输入图像的噪声信息,同样由一系列卷积层和ReLU激活函数组成,最终输出一个通道数为3的图像,表示噪声在RGB通道上的分布。

 最后,illumination_netreflectance_net的输出经过sigmoid函数处理,而noise_net的输出则经过tanh函数处理。


 ☀️2.2 损失函数—loss_functions.py

import torch
import torch.nn as nn
import torch.nn.functional as F
import conf#----------- 1.reconstruction_loss:计算重构损失---------------------------#
def reconstruction_loss(image, illumination, reflectance, noise):reconstructed_image = illumination*reflectance+noisereturn torch.norm(image-reconstructed_image, 1)#----------- 2.gradient: 计算输入图像在水平和垂直方向上的梯度--------------------#
def gradient(img):height = img.size(2)width = img.size(3)gradient_h = (img[:,:,2:,:]-img[:,:,:height-2,:]).abs()gradient_w = (img[:, :, :, 2:] - img[:, :, :, :width-2]).abs()gradient_h = F.pad(gradient_h, [0, 0, 1, 1], 'replicate')gradient_w = F.pad(gradient_w, [1, 1, 0, 0], 'replicate')gradient2_h = (img[:,:,4:,:]-img[:,:,:height-4,:]).abs()gradient2_w = (img[:, :, :, 4:] - img[:, :, :, :width-4]).abs()gradient2_h = F.pad(gradient2_h, [0, 0, 2, 2], 'replicate')gradient2_w = F.pad(gradient2_w, [2, 2, 0, 0], 'replicate')return gradient_h*gradient2_h, gradient_w*gradient2_w#----------- 3.normalize01: 将输入图像进行归一化到0到1的范围内---------------------#
def normalize01(img):minv = img.min()maxv = img.max()return (img-minv)/(maxv-minv)#----------- 4.gaussianblur3: 3通道的高斯模糊---------------------------#
def gaussianblur3(input):slice1 = F.conv2d(input[:,0,:,:].unsqueeze(1), weight=conf.gaussian_kernel, padding=conf.g_padding)slice2 = F.conv2d(input[:,1,:,:].unsqueeze(1), weight=conf.gaussian_kernel, padding=conf.g_padding)slice3 = F.conv2d(input[:,2,:,:].unsqueeze(1), weight=conf.gaussian_kernel, padding=conf.g_padding)x = torch.cat([slice1,slice2, slice3], dim=1)return x#----------- 5.illumination_smooth_loss: 计算光照平滑损失---------------------------#
def illumination_smooth_loss(image, illumination):gray_tensor = 0.299*image[0,0,:,:] + 0.587*image[0,1,:,:] + 0.114*image[0,2,:,:]max_rgb, _ = torch.max(image, 1)max_rgb = max_rgb.unsqueeze(1)gradient_gray_h, gradient_gray_w = gradient(gray_tensor.unsqueeze(0).unsqueeze(0))gradient_illu_h, gradient_illu_w = gradient(illumination)weight_h = 1/(F.conv2d(gradient_gray_h, weight=conf.gaussian_kernel, padding=conf.g_padding)+0.0001)weight_w = 1/(F.conv2d(gradient_gray_w, weight=conf.gaussian_kernel, padding=conf.g_padding)+0.0001)weight_h.detach()weight_w.detach()loss_h = weight_h * gradient_illu_hloss_w = weight_w * gradient_illu_wmax_rgb.detach()return loss_h.sum() + loss_w.sum() + torch.norm(illumination-max_rgb, 1)#----------- 6.reflectance_smooth_loss:计算反射率平滑损失---------------------------#
def reflectance_smooth_loss(image, illumination, reflectance):gray_tensor = 0.299*image[0,0,:,:] + 0.587*image[0,1,:,:] + 0.114*image[0,2,:,:]gradient_gray_h, gradient_gray_w = gradient(gray_tensor.unsqueeze(0).unsqueeze(0))gradient_reflect_h, gradient_reflect_w = gradient(reflectance)weight = 1/(illumination*gradient_gray_h*gradient_gray_w+0.0001)weight = normalize01(weight)weight.detach()loss_h = weight * gradient_reflect_hloss_w = weight * gradient_reflect_wrefrence_reflect = image/illuminationrefrence_reflect.detach()return loss_h.sum() + loss_w.sum() + conf.reffac*torch.norm(refrence_reflect - reflectance, 1)#----------- 7.noise_loss: 计算噪声损失---------------------------#
def noise_loss(image, illumination, reflectance, noise):weight_illu = illuminationweight_illu.detach()loss = weight_illu*noisereturn torch.norm(loss, 2)
(1)重构损失——reconstruction_loss

图像的分解组件必须满足Robust Retinex的公式,将RGB三个通道中最大强度值S的初始值,在此基础上约束反射图和噪声。

(2)光照损失——illumination_smooth_loss

通过平滑的光照图可以增强暗区域的纹理细节,公式中x和y是水平和垂直方向,Wx和Wy是确保图像平滑的权重参数。

权重与梯度呈反比,梯度大的地方权重小,梯度小的地方权重大,因此将高斯滤波G放在分母,这里公式中的I是输入图像转换成的灰度图,Wy的计算方式和Wx的相同。

(3)反射损失——reflectance_smooth_loss

通过平滑反射图来得到噪声,本身并没有直接得到噪声的损失,只是通过对反射图做总变分约束来去噪。

(4)噪声损失——noise_loss

为了增加图像的清晰度增加了图像的对比度,与此同时,图像的噪声也被放大,出于以下两点限制噪声:

  1. 噪声的范围需要被限制。
  2. 噪声可以平滑的反射图限制。


  ☀️2.3 Retinex操作—pipline.py

import os
import numpy as np
import cv2
import torch
import torch.optim as optim
import torch.nn as nn
from PIL import Image
from torchvision import transforms
import torch.nn.init as initfrom model.RRDNet import RRDNet
from loss.loss_functions import reconstruction_loss, illumination_smooth_loss, reflectance_smooth_loss, noise_loss, normalize01
import conf#----------- retinex图像增强---------------------------#
def pipline_retinex(net, img):img_tensor = transforms.ToTensor()(img)  # [c, h, w] #将输入图像转换为张量,并调整形状img_tensor = img_tensor.to(conf.device)img_tensor = img_tensor.unsqueeze(0)     # [1, c, h, w]optimizer = optim.Adam(net.parameters(), lr=conf.lr)# iterations:迭代优化过程for i in range(conf.iterations+1):# forward:通过网络前向传播得到光照、反射率和噪声图像。illumination, reflectance, noise = net(img_tensor)  # [1, c, h, w]# loss computing:计算总损失,并进行反向传播优化网络参数。loss_recons = reconstruction_loss(img_tensor, illumination, reflectance, noise)  # 重构损失loss_illu = illumination_smooth_loss(img_tensor, illumination) # 光照损失loss_reflect = reflectance_smooth_loss(img_tensor, illumination, reflectance) #反射损失loss_noise = noise_loss(img_tensor, illumination, reflectance, noise) # 噪声损失loss = loss_recons + conf.illu_factor*loss_illu + conf.reflect_factor*loss_reflect + conf.noise_factor*loss_noise# backwardnet.zero_grad()loss.backward()optimizer.step()# log:每隔 100 次迭代打印日志,显示重建损失、光照损失、反射率损失和噪声损失的数值。if i%100 == 0:print("iter:", i, '  reconstruction loss:', float(loss_recons.data), '  illumination loss:', float(loss_illu.data), '  reflectance loss:', float(loss_reflect.data), '  noise loss:', float(loss_noise.data))# adjustment:对增强后的图像进行调整adjust_illu = torch.pow(illumination, conf.gamma)res_image = adjust_illu*((img_tensor-noise)/illumination)# 对增强后的图像进行调整res_image = torch.clamp(res_image, min=0, max=1)# 对调整后的图像进行限幅操作,确保像素值在 0 到 1 之间。if conf.device != 'cpu':res_image = res_image.cpu()illumination = illumination.cpu()adjust_illu = adjust_illu.cpu()reflectance = reflectance.cpu()noise = noise.cpu()# 将处理后的张量转换为 PIL 图像res_img = transforms.ToPILImage()(res_image.squeeze(0))illum_img = transforms.ToPILImage()(illumination.squeeze(0))adjust_illu_img = transforms.ToPILImage()(adjust_illu.squeeze(0))reflect_img = transforms.ToPILImage()(reflectance.squeeze(0))noise_img = transforms.ToPILImage()(normalize01(noise.squeeze(0)))return res_img, illum_img, adjust_illu_img, reflect_img, noise_imgif __name__ == '__main__':# Init Modelnet = RRDNet()net = net.to(conf.device)# Testimg = Image.open(conf.test_image_path)res_img, illum_img, adjust_illu_img, reflect_img, noise_img = pipline_retinex(net, img)res_img.save('./test/result.jpg')illum_img.save('./test/illumination.jpg')adjust_illu_img.save('./test/adjust_illumination.jpg')reflect_img.save('./test/reflectance.jpg')noise_img.save('./test/noise_map.jpg')

这段代码基本都注释了,就不再详细讲解了~


🚀三、RDDNet代码复现

☀️3.1 环境配置

  • Python 3
  • PyTorch >= 0.4.1
  • PIL >= 6.1.0
  • Opencv-python>=3.4

☀️3.2 运行过程

这个也是运行比较简单,配好环境就行 。不再过多叙述~


☀️3.3 运行效果

没错,你怎么知道我去看邓紫棋演唱会啦~ 

这篇关于【低照度图像增强系列(7)】RDDNet算法详解与代码实现(同济大学|ICME)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/998812

相关文章

HTML5 getUserMedia API网页录音实现指南示例小结

《HTML5getUserMediaAPI网页录音实现指南示例小结》本教程将指导你如何利用这一API,结合WebAudioAPI,实现网页录音功能,从获取音频流到处理和保存录音,整个过程将逐步... 目录1. html5 getUserMedia API简介1.1 API概念与历史1.2 功能与优势1.3

Java实现删除文件中的指定内容

《Java实现删除文件中的指定内容》在日常开发中,经常需要对文本文件进行批量处理,其中,删除文件中指定内容是最常见的需求之一,下面我们就来看看如何使用java实现删除文件中的指定内容吧... 目录1. 项目背景详细介绍2. 项目需求详细介绍2.1 功能需求2.2 非功能需求3. 相关技术详细介绍3.1 Ja

spring中的ImportSelector接口示例详解

《spring中的ImportSelector接口示例详解》Spring的ImportSelector接口用于动态选择配置类,实现条件化和模块化配置,关键方法selectImports根据注解信息返回... 目录一、核心作用二、关键方法三、扩展功能四、使用示例五、工作原理六、应用场景七、自定义实现Impor

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

PostgreSQL中MVCC 机制的实现

《PostgreSQL中MVCC机制的实现》本文主要介绍了PostgreSQL中MVCC机制的实现,通过多版本数据存储、快照隔离和事务ID管理实现高并发读写,具有一定的参考价值,感兴趣的可以了解一下... 目录一 MVCC 基本原理python1.1 MVCC 核心概念1.2 与传统锁机制对比二 Postg

一文详解MySQL如何设置自动备份任务

《一文详解MySQL如何设置自动备份任务》设置自动备份任务可以确保你的数据库定期备份,防止数据丢失,下面我们就来详细介绍一下如何使用Bash脚本和Cron任务在Linux系统上设置MySQL数据库的自... 目录1. 编写备份脚本1.1 创建并编辑备份脚本1.2 给予脚本执行权限2. 设置 Cron 任务2

SpringBoot整合Flowable实现工作流的详细流程

《SpringBoot整合Flowable实现工作流的详细流程》Flowable是一个使用Java编写的轻量级业务流程引擎,Flowable流程引擎可用于部署BPMN2.0流程定义,创建这些流程定义的... 目录1、流程引擎介绍2、创建项目3、画流程图4、开发接口4.1 Java 类梳理4.2 查看流程图4

一文详解如何在idea中快速搭建一个Spring Boot项目

《一文详解如何在idea中快速搭建一个SpringBoot项目》IntelliJIDEA作为Java开发者的‌首选IDE‌,深度集成SpringBoot支持,可一键生成项目骨架、智能配置依赖,这篇文... 目录前言1、创建项目名称2、勾选需要的依赖3、在setting中检查maven4、编写数据源5、开启热

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri