英伟达发布 VILA 视觉语言模型,实现多图像推理、增强型上下文学习,性能超越 LLaVA-1.5

本文主要是介绍英伟达发布 VILA 视觉语言模型,实现多图像推理、增强型上下文学习,性能超越 LLaVA-1.5,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

近年来,大型语言模型 (LLM) 的发展取得了显著的成果,并逐渐应用于多模态领域,例如视觉语言模型 (VLM)。VLM 旨在将 LLM 的强大能力扩展到视觉领域,使其能够理解和处理图像和文本信息,并完成诸如视觉问答、图像描述生成等任务。然而,现有的 VLM 通常缺乏对视觉语言预训练过程的深入研究,导致模型在多模态任务上的性能和泛化能力受限。为了解决这个问题,英伟达的研究人员发布了 VILA,一种全新的 VLM,通过改进的预训练方法实现了多图像推理、增强型上下文学习等能力,并在多个基准测试中性能超越了 SOTA 模型 LLaVA-1.5。

  • Huggingface模型下载:https://huggingface.co/Efficient-Large-Model/Llama-3-VILA1.5-8B

  • AI快站模型免费加速下载:https://aifasthub.com/models/Efficient-Large-Model

技术特点
优化视觉语言预训练过程

VILA 的核心技术在于对视觉语言预训练过程的优化。研究人员通过对预训练数据集、训练策略和模型架构进行深入研究,发现了影响 VLM 性能的关键因素:

  • 更新 LLM 传统的 VLM 预训练方法通常冻结 LLM 参数,仅训练视觉编码器和投影层。而 VILA 发现,更新 LLM 参数对于模型的上下文学习能力至关重要。通过更新 LLM,模型能够更好地将视觉和文本特征融合到深层网络中,从而提高对多模态信息的理解能力。

  • 交错式视觉语言数据: VILA 发现,使用交错式视觉语言数据(例如 MMC4 数据集)进行预训练,能够更好地保留 LLM 的文本处理能力,并提升模型在视觉语言任务上的性能。与仅包含图像-文本对的数据集相比,交错式数据集更接近于 LLM 预训练所使用的纯文本语料,因此能够更有效地进行模态对齐。

  • 联合监督微调: 为了弥补预训练过程中 LLM 文本能力的下降,VILA 采用联合监督微调方法,将纯文本指令数据添加到视觉语言指令数据中进行微调。这种方法不仅能够恢复 LLM 的文本能力,还能提升模型在视觉语言任务上的准确率。

简单高效的模型架构

VILA 采用了简单高效的模型架构,包括视觉编码器、LLM 和投影层。视觉编码器用于提取图像特征,LLM 用于处理文本和视觉特征,投影层用于将视觉特征映射到 LLM 的输入空间。VILA 使用 CLIP 模型作为视觉编码器,并使用 Llama-2 作为 LLM。投影层则采用简单的线性层,以保证模型的效率。

性能表现

VILA 在 12 个视觉语言基准测试中展现出优异的性能,并超越了 SOTA 模型 LLaVA-1.5,例如:

  • VQAv2: VILA-13B 的准确率达到了 80.8%,高于 LLaVA-1.5-13B 的 80.0%。

  • GQA: VILA-13B 的准确率达到了 63.3%,高于 LLaVA-1.5-13B 的 63.3%。

  • TextVQA: VILA-13B 的准确率达到了 73.7%,高于 LLaVA-1.5-13B 的 71.6%。

  • 多语言能力: VILA 在 MMBench-Chinese 基准测试中也取得了优异的成绩,表明其具有多语言处理能力。

此外,VILA 还表现出强大的文本处理能力,在 MMLU、BBH 和 DROP 等文本基准测试中也取得了与 Llama-2 相当的成绩。

应用场景

VILA 凭借其强大的性能和多模态理解能力,在众多应用场景中具有巨大潜力:

  • 视觉问答: VILA 可以用于回答与图像相关的问题,例如“图片中有什么?”、“这个人正在做什么?”等。

  • 图像描述生成: VILA 可以根据图像内容生成详细的描述,例如“这是一张海滩的照片,沙滩上有很多人在晒太阳”。

  • 多模态对话: VILA 可以与用户进行多模态对话,例如用户可以上传一张图片并询问相关问题,VILA 可以根据图片内容进行回答。

  • 多图像推理: VILA 能够理解多张图片之间的关系,并进行推理,例如找出多张图片中的共同点或差异。

总结

VILA 是英伟达发布的一款全新的视觉语言模型,通过优化预训练方法实现了多图像推理、增强型上下文学习等能力,并在多个基准测试中性能超越了 SOTA 模型 LLaVA-1.5。VILA 的发布表明,视觉语言预训练对于 VLM 的性能提升至关重要,而交错式数据、LLM 参数更新和联合监督微调则是提升 VLM 性能的关键因素。相信 VILA 将会推动 VLM 的进一步发展,为多模态人工智能应用带来更多可能性。

模型下载

Huggingface模型下载

https://huggingface.co/Efficient-Large-Model/Llama-3-VILA1.5-8B

AI快站模型免费加速下载

https://aifasthub.com/models/Efficient-Large-Model

这篇关于英伟达发布 VILA 视觉语言模型,实现多图像推理、增强型上下文学习,性能超越 LLaVA-1.5的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/994705

相关文章

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

PostgreSQL中MVCC 机制的实现

《PostgreSQL中MVCC机制的实现》本文主要介绍了PostgreSQL中MVCC机制的实现,通过多版本数据存储、快照隔离和事务ID管理实现高并发读写,具有一定的参考价值,感兴趣的可以了解一下... 目录一 MVCC 基本原理python1.1 MVCC 核心概念1.2 与传统锁机制对比二 Postg

SpringBoot整合Flowable实现工作流的详细流程

《SpringBoot整合Flowable实现工作流的详细流程》Flowable是一个使用Java编写的轻量级业务流程引擎,Flowable流程引擎可用于部署BPMN2.0流程定义,创建这些流程定义的... 目录1、流程引擎介绍2、创建项目3、画流程图4、开发接口4.1 Java 类梳理4.2 查看流程图4

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal