【MATLAB源码-第208期】基于matlab的改进A*算法和传统A*算法对比仿真;改进点:1.无斜穿障碍物顶点2.删除中间多余节点,减少转折。

本文主要是介绍【MATLAB源码-第208期】基于matlab的改进A*算法和传统A*算法对比仿真;改进点:1.无斜穿障碍物顶点2.删除中间多余节点,减少转折。,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

操作环境:

MATLAB 2022a

1、算法描述

改进A*算法的优点分析

改进A*算法相对于传统A*算法在多个方面进行了优化,包括避免斜穿障碍物顶点、删除中间多余节点以及提高搜索效率。这些改进措施使得路径规划更加高效、安全和可靠,特别是在复杂环境中表现尤为突出。本文将详细讨论这些改进及其带来的优点。

1. 避免斜穿障碍物顶点,避免碰撞

在路径规划过程中,斜穿障碍物顶点会带来很大的风险,可能导致机器人或自动驾驶车辆与障碍物发生碰撞。传统的A*算法在扩展邻接节点时,没有考虑这一点,可能会选择那些斜穿障碍物顶点的路径,从而增加碰撞的风险。改进A*算法通过对邻接节点的严格检查,避免了这种情况的发生。

具体来说,改进A*算法在扩展当前节点的邻接节点时,会检测这些节点是否与障碍物顶点相邻,如果是,则不将该节点加入开放列表。这样一来,生成的路径将不会斜穿任何障碍物顶点,从而避免了潜在的碰撞风险。这种约束确保了路径的安全性,提高了算法在实际应用中的可靠性。

这一改进在实际应用中具有重要意义。特别是在机器人导航、无人机飞行和自动驾驶等领域,路径的安全性至关重要。通过避免斜穿障碍物顶点,改进A*算法能够生成更安全、更可靠的路径,有效避免潜在的碰撞风险。这不仅保护了设备的安全,还保护了周围环境和人类的安全。

2. 删除中间多余节点,减少转折

传统A*算法生成的路径往往包含许多不必要的中间节点,这些节点会增加路径的转折点,使路径变得曲折,从而增加行驶时间和能耗。改进A*算法通过优化路径,删除不必要的中间节点,从而减少转折点,使路径更加平滑。

在路径生成过程中,改进A*算法首先生成一条初始路径,然后对该路径进行进一步优化。具体来说,算法会检查路径中的每个节点,并删除那些不影响路径连通性的中间节点。这一优化过程显著减少了路径中的转折点,使路径更加平滑和直观。

这种改进不仅减少了机器人或车辆的行驶时间和能耗,还提高了路径的效率和可靠性。平滑的路径意味着机器人或车辆可以更高效地移动,减少了频繁转向的时间和能量消耗。同时,减少转折点也降低了路径规划的复杂性,使得算法在实际应用中更加易于实现。

3. 提高搜索效率

改进A*算法在提高搜索效率方面也做了许多优化。传统A*算法在搜索过程中,会扩展大量的节点,特别是在复杂环境中,计算量非常大。改进A*算法通过多种方式提高了搜索效率,包括优化启发函数和调整节点扩展策略。

首先,改进A*算法使用了一种改进的启发函数,结合了路径成本和障碍率的因素,使得评价函数更加准确。这种启发函数不仅考虑了当前路径的成本,还考虑了从当前节点到目标节点之间的障碍物数量,从而更准确地评估每个节点的优先级。具体来说,评价函数采用了以下形式:

𝑓(𝑛)=𝑔(𝑛)+(1−log⁡(𝑃))⋅ℎ(𝑛)​ g(n)是当前节点到目标节点的估计成本,h(n) 是起始点与目标点之间的障碍率,表示障碍物的数量与栅格总数之比。通过引入障碍率,改进A*算法能够更有效地避开障碍物,提高了路径规划的效率。

其次,改进A*算法在扩展节点时,会优先扩展那些更有可能通向目标节点的节点。具体来说,算法会根据启发函数的值对邻接节点进行排序,优先扩展那些评价函数值较小的节点,从而减少了不必要的计算量。这些优化措施显著提高了算法的搜索效率,特别是在复杂环境中,能够更快地找到最优路径。

4. 路径的三次优化

改进A*算法不仅在初始路径生成时进行了优化,还通过多次优化进一步提高了路径的质量。具体来说,改进A*算法在生成初始路径后,会对路径进行三次优化,分别删除不必要的中间节点、调整路径使其更加平滑以及进一步删除转折点。

第一次优化通过Line_OPEN_ST函数对路径进行处理,删除不必要的中间节点。第二次优化通过Line_OPEN_STtwo函数进一步平滑路径,减少转折点。第三次优化再次通过Line_OPEN_STtwo函数对路径进行调整,确保路径尽可能直。

这种多次优化的策略使得最终生成的路径不仅安全可靠,而且平滑高效。这在实际应用中具有重要意义,特别是在复杂环境中,优化后的路径能够更好地适应环境的变化,提高路径规划的鲁棒性和适应性。

5. 实际应用中的效果

通过对比传统A*算法和改进A*算法在实际应用中的效果,可以看出改进A*算法在多个方面表现出了显著的优势。在路径的安全性方面,改进A*算法通过避免斜穿障碍物顶点,有效减少了潜在的碰撞风险,保证了路径的安全可靠。在路径的平滑性方面,改进A*算法通过删除中间多余节点和减少转折,使路径更加直观和平滑,提高了路径的效率和可靠性。在搜索效率方面,改进A*算法通过优化启发函数和调整节点扩展策略,显著减少了计算量,提高了路径规划的速度。

例如,在机器人导航中,改进A*算法能够生成更加安全和平滑的路径,使机器人能够更高效地到达目标位置。在自动驾驶中,改进A*算法能够生成更加可靠和高效的行驶路径,减少车辆的行驶时间和能耗。在无人机飞行中,改进A*算法能够生成更加安全和高效的飞行路径,避免碰撞风险,提高飞行效率。

6. 进一步改进的潜力

尽管改进A*算法在多个方面表现出优越的性能,但仍有进一步改进的潜力。首先,在处理动态环境时,改进A*算法可以结合实时环境感知技术,动态调整路径,提高路径规划的实时性和适应性。其次,在处理多目标路径规划时,改进A*算法可以结合多目标优化算法,同时考虑多个目标,提高路径规划的综合性能。此外,改进A*算法还可以结合机器学习技术,通过学习环境特征和路径规划经验,进一步提高路径规划的效率和可靠性。

总结

改进A*算法通过避免斜穿障碍物顶点、删除中间多余节点和提高搜索效率,在路径规划中展现出优越的性能。具体来说,这些改进使得路径更加安全、平滑和高效,特别适用于机器人导航、无人机飞行和自动驾驶等领域。

  1. 避免斜穿障碍物顶点:通过严格检查邻接节点,避免路径斜穿障碍物顶点,提高了路径的安全性和可靠性。

  2. 删除中间多余节点,减少转折:通过路径优化,删除不必要的中间节点,使路径更加平滑,减少了行驶时间和能耗。

  3. 提高搜索效率:通过优化启发函数和节点扩展策略,减少了不必要的计算量,显著提高了算法的搜索效率。

  4. 路径的三次优化:通过三次优化策略,进一步提高了路径的质量,使路径更加平滑和高效。

  5. 实际应用中的效果:在机器人导航、自动驾驶和无人机飞行等实际应用中,改进A*算法展现出了显著的优势。

  6. 进一步改进的潜力:结合实时环境感知、多目标优化和机器学习技术,改进A*算法具有进一步提升的潜力。

2、仿真结果演示

3、关键代码展示

4、MATLAB 源码获取

      V

点击下方名片

这篇关于【MATLAB源码-第208期】基于matlab的改进A*算法和传统A*算法对比仿真;改进点:1.无斜穿障碍物顶点2.删除中间多余节点,减少转折。的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/994120

相关文章

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

Redis过期删除机制与内存淘汰策略的解析指南

《Redis过期删除机制与内存淘汰策略的解析指南》在使用Redis构建缓存系统时,很多开发者只设置了EXPIRE但却忽略了背后Redis的过期删除机制与内存淘汰策略,下面小编就来和大家详细介绍一下... 目录1、简述2、Redis http://www.chinasem.cn的过期删除策略(Key Expir

使用C#删除Excel表格中的重复行数据的代码详解

《使用C#删除Excel表格中的重复行数据的代码详解》重复行是指在Excel表格中完全相同的多行数据,删除这些重复行至关重要,因为它们不仅会干扰数据分析,还可能导致错误的决策和结论,所以本文给大家介绍... 目录简介使用工具C# 删除Excel工作表中的重复行语法工作原理实现代码C# 删除指定Excel单元

Linux中的more 和 less区别对比分析

《Linux中的more和less区别对比分析》在Linux/Unix系统中,more和less都是用于分页查看文本文件的命令,但less是more的增强版,功能更强大,:本文主要介绍Linu... 目录1. 基础功能对比2. 常用操作对比less 的操作3. 实际使用示例4. 为什么推荐 less?5.

8种快速易用的Python Matplotlib数据可视化方法汇总(附源码)

《8种快速易用的PythonMatplotlib数据可视化方法汇总(附源码)》你是否曾经面对一堆复杂的数据,却不知道如何让它们变得直观易懂?别慌,Python的Matplotlib库是你数据可视化的... 目录引言1. 折线图(Line Plot)——趋势分析2. 柱状图(Bar Chart)——对比分析3

Python对PDF书签进行添加,修改提取和删除操作

《Python对PDF书签进行添加,修改提取和删除操作》PDF书签是PDF文件中的导航工具,通常包含一个标题和一个跳转位置,本教程将详细介绍如何使用Python对PDF文件中的书签进行操作... 目录简介使用工具python 向 PDF 添加书签添加书签添加嵌套书签Python 修改 PDF 书签Pytho

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

基于Go语言实现Base62编码的三种方式以及对比分析

《基于Go语言实现Base62编码的三种方式以及对比分析》Base62编码是一种在字符编码中使用62个字符的编码方式,在计算机科学中,,Go语言是一种静态类型、编译型语言,它由Google开发并开源,... 目录一、标准库现状与解决方案1. 标准库对比表2. 解决方案完整实现代码(含边界处理)二、关键实现细

macOS Sequoia 15.5 发布: 改进邮件和屏幕使用时间功能

《macOSSequoia15.5发布:改进邮件和屏幕使用时间功能》经过常规Beta测试后,新的macOSSequoia15.5现已公开发布,但重要的新功能将被保留到WWDC和... MACOS Sequoia 15.5 正式发布!本次更新为 Mac 用户带来了一系列功能强化、错误修复和安全性提升,进一步增

PostgreSQL 序列(Sequence) 与 Oracle 序列对比差异分析

《PostgreSQL序列(Sequence)与Oracle序列对比差异分析》PostgreSQL和Oracle都提供了序列(Sequence)功能,但在实现细节和使用方式上存在一些重要差异,... 目录PostgreSQL 序列(Sequence) 与 oracle 序列对比一 基本语法对比1.1 创建序