《算法导论》学习笔记之Chapter8线性时间排序

2024-05-16 00:18

本文主要是介绍《算法导论》学习笔记之Chapter8线性时间排序,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

第8章 线性时间排序

前面介绍的包括归并排序,堆排序和快速排序,最后的次序都依赖于元素之间的比较,叫做比较排序

归并排序和堆排序都是渐近最优的,且任何已知的比较排序最多就是在常数因子上优于他们。即比较排序的时间复杂度下界就是Ω(nlogn)。

线性时间排序算法,包括:基数排序,计数排序和桶排序,是靠运算不是比较来排序的,下界Ω(nlogn)不是他们的下界。


计数排序:假设n个输入元素中的每一个都是在0-k区间内的一个整数,其中k为某个整数。当k=O(n)时,排序的运行时间为O(n)。基本思想是:对每一个输入元素x,确定小于x的元素个数。利用这一信息,直接把x放到他在输出数组中中的位置上了。当出现元素相同时,需要稍作修改。代码如下:

        //计数排序
	public void CountingSort(int[] a, int[] b, int k){
		int[] c = new int[k];
		for (int i = 0; i < k; i++){
			c[i] = 0;
		}
		//统计每个位置上的数字都分别有几个
		for (int j = 0; j < a.length; j++){
			c[a[j]] = c[a[j]] + 1;
		}
		//统计小于等于该排位上的数字的总数
		for(int i = 1; i < k; i++){
			c[i] = c[i] + c[i - 1];
		}
		//根据c上面每个排位的数字把a中的数字分别直接放到其排序后的数字上
		for (int j = a.length - 1; j >= 0; j--){
			b[c[a[j]] - 1] = a[j];
			c[a[j]] = c[a[j]] - 1;
		}
	}

计数排序的下界是Ω(nlogn),且是稳定的。具有相同值的元素在输出数组中的相对次序与输入数组中的相对次序相同。


基数排序:是一种用在卡片排序机上的算法。


桶排序:假设输入数据服从均匀分布,平均情况下他的时间代价为O(n)。与计数排序类似,桶排序也是对输入数据作出某种假设,所以速度较快。桶排序假设输入数据是由一个随机过程产生,该过程将元素均匀、独立地分布在[0,1)区间上。桶排序将[0,1)区间划分为n个相同大小的子区间,或称为桶。排序思想是:因为输入数据是均匀、独立地分布在[0,1)区间上,所以一般不会出现很多数落在同一个桶中的情况。为了的到输出结果,我们先对每个桶中的数进行排序,然后遍历每个桶,按照次序把各个桶的元素列出来即可。代码如下:

         public void BucketSort(Double[] a) {int n = a.length;/*** 创建链表(桶)集合并初始化,集合中的链表用于存放相应的元素*/int bucketNum = 10; // 桶数LinkedList<LinkedList<Double>> buckets = new LinkedList<LinkedList<Double>>();for (int i = 0; i < bucketNum; i++) {LinkedList<Double> bucket = new LinkedList<Double>();buckets.add(bucket);}// 把元素放进相应的桶中for (int i = 0; i < n; i++) {int index = (int) (a[i] * bucketNum);buckets.get(index).add(a[i]);}// 对每个桶中的元素排序,并放进a中int index = 0;for (LinkedList<Double> linkedList : buckets) {int size = linkedList.size();if (size == 0) {continue;}// 把LinkedList<Double>转化为Double[]的原因是,之前已经实现了对数组进行排序的算法Double[] temp = new Double[size];for (int i = 0; i < temp.length; i++) {temp[i] = linkedList.get(i);}// 利用插入排序对temp排序InsertSort(temp);for (int i = 0; i < temp.length; i++) {a[index] = temp[i];index++;}}}

只要输入数据满足以下条件:所有桶的大小的平方和与总的元素数呈线性关系,那么桶排序就可以按照线性时间 θ(n)完成排序。


这篇关于《算法导论》学习笔记之Chapter8线性时间排序的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/993330

相关文章

Golang如何对cron进行二次封装实现指定时间执行定时任务

《Golang如何对cron进行二次封装实现指定时间执行定时任务》:本文主要介绍Golang如何对cron进行二次封装实现指定时间执行定时任务问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录背景cron库下载代码示例【1】结构体定义【2】定时任务开启【3】使用示例【4】控制台输出总结背景

一文详解Java Stream的sorted自定义排序

《一文详解JavaStream的sorted自定义排序》Javastream中的sorted方法是用于对流中的元素进行排序的方法,它可以接受一个comparator参数,用于指定排序规则,sorte... 目录一、sorted 操作的基础原理二、自定义排序的实现方式1. Comparator 接口的 Lam

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

从基础到进阶详解Pandas时间数据处理指南

《从基础到进阶详解Pandas时间数据处理指南》Pandas构建了完整的时间数据处理生态,核心由四个基础类构成,Timestamp,DatetimeIndex,Period和Timedelta,下面我... 目录1. 时间数据类型与基础操作1.1 核心时间对象体系1.2 时间数据生成技巧2. 时间索引与数据

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

利用Python实现时间序列动量策略

《利用Python实现时间序列动量策略》时间序列动量策略作为量化交易领域中最为持久且被深入研究的策略类型之一,其核心理念相对简明:对于显示上升趋势的资产建立多头头寸,对于呈现下降趋势的资产建立空头头寸... 目录引言传统策略面临的风险管理挑战波动率调整机制:实现风险标准化策略实施的技术细节波动率调整的战略价

Java List排序实例代码详解

《JavaList排序实例代码详解》:本文主要介绍JavaList排序的相关资料,Java排序方法包括自然排序、自定义排序、Lambda简化及多条件排序,实现灵活且代码简洁,文中通过代码介绍的... 目录一、自然排序二、自定义排序规则三、使用 Lambda 表达式简化 Comparator四、多条件排序五、

JAVA数组中五种常见排序方法整理汇总

《JAVA数组中五种常见排序方法整理汇总》本文给大家分享五种常用的Java数组排序方法整理,每种方法结合示例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录前言:法一:Arrays.sort()法二:冒泡排序法三:选择排序法四:反转排序法五:直接插入排序前言:几种常用的Java数组排序

Python日期和时间完全指南与实战

《Python日期和时间完全指南与实战》在软件开发领域,‌日期时间处理‌是贯穿系统设计全生命周期的重要基础能力,本文将深入解析Python日期时间的‌七大核心模块‌,通过‌企业级代码案例‌揭示最佳实践... 目录一、背景与核心价值二、核心模块详解与实战2.1 datetime模块四剑客2.2 时区处理黄金法