线性/非线性最小二乘 与 牛顿/高斯牛顿/LM 原理及算法

2024-05-15 10:28

本文主要是介绍线性/非线性最小二乘 与 牛顿/高斯牛顿/LM 原理及算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最小二乘分为线性最小二乘非线性最小二乘

最小二乘目标函数都是min ||f(x)||2

  • 若f(x) = ax + b,就是线性最小二乘;
  • 若f(x) = ax2 + b / ax2 + bx 之类的,就是非线性最小二乘;

1. 求解线性最小二乘

【参考】

2. 求解非线性最小二乘

需要用到牛顿法,高斯牛顿法,或者LM法
目标函数都是min F(x) = min ||f(x)||2
求解的时候需要求解的是f(x)的最小值,其实求解的就是f(x)'=0的地方

(1) 牛顿法/高斯梯度下降

牛顿法是将f(x)进行二阶泰勒展开: f(x)=f(xk)+f’(xk)(x-xk)+1/2 f’‘(xk)(x-xk)2
因为求解的其实是上式的最小值,也就是求解上式导数为0的值
核心迭代等式:xk+1 = xk - f’(xk)/f’'(xk)
其中,一阶导f’(xk)可以看成雅可比矩阵J,二阶导f’'(xk)可以看成海森矩阵H

算法

  1. 给定初值x0
  2. 对于第k次迭代,求出一阶导f’(xk)和二阶导f’'(xk)
  3. 如果f’(xk)足够小则停止;否则xk+1=xk - f’(xk)/f’'(xk),返回2

(2) 高斯牛顿法

这里的f(x)代表的是目标函数F(x)
是将f(x)进行一阶泰勒展开:f(x+dx) = f(x) + J*dx
取得最小值的条件也就是 f(x) + J * dx这个式子对dx的导数为0,
可以求解得到: JTJ * dx = - J * f(x) ,可以简化为 H dx = g
刚好利用JTJ代替H,减少H计算量

算法

求解等式为 JTJ * dx = - J * f(x),即增量方程,这里的dx也就是每次需要寻找的变化量

  1. 给定初值x0
  2. 对于第k次迭代,求出雅可比J(xk) 和f(xk)
  3. 将以上两值代入,利用方程H dx = g,求解dx
  4. 如果dx足够小则停止,否则xk+1=xk+dx,返回2

(3) LM法

高斯牛顿本质求解的是xk+1 = xk - H-1 * J(xk) * f(xk) 但是H如果非正定,那 H-1不存在,因此将其加上单位矩阵结局正定问题 :(H + kI)dx = g

计算信赖区间 ρ请添加图片描述
算法

求解等式为 (JTJ+ μI) dx = -J f(x),其中J = J(xk),f(x) = f(xk)

  1. 给定初值x0
  2. 对于第k次迭代,求出雅可比J(xk) 和f(xk)
  3. 计算ρ,若 ρ > 3/4,则 μ = 2μ;
        若 ρ < 1/4,则 μ = 0.5μ;
  4. 将J(xk) ,f(xk)和 μ代入,利用方程 (H + μI) dx = g,求解dx
  5. 如果dx足够小则停止,否则xk+1=xk+dx,返回2

参考
https://zhuanlan.zhihu.com/p/556170185?utm_id=0
https://blog.csdn.net/weixin_43763292/article/details/128060801
https://blog.csdn.net/weixin_41869763/article/details/103603089

这篇关于线性/非线性最小二乘 与 牛顿/高斯牛顿/LM 原理及算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/991575

相关文章

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

Java Spring 中 @PostConstruct 注解使用原理及常见场景

《JavaSpring中@PostConstruct注解使用原理及常见场景》在JavaSpring中,@PostConstruct注解是一个非常实用的功能,它允许开发者在Spring容器完全初... 目录一、@PostConstruct 注解概述二、@PostConstruct 注解的基本使用2.1 基本代

Golang HashMap实现原理解析

《GolangHashMap实现原理解析》HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持高效的插入、查找和删除操作,:本文主要介绍GolangH... 目录HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持

Spring Boot循环依赖原理、解决方案与最佳实践(全解析)

《SpringBoot循环依赖原理、解决方案与最佳实践(全解析)》循环依赖指两个或多个Bean相互直接或间接引用,形成闭环依赖关系,:本文主要介绍SpringBoot循环依赖原理、解决方案与最... 目录一、循环依赖的本质与危害1.1 什么是循环依赖?1.2 核心危害二、Spring的三级缓存机制2.1 三

C#中async await异步关键字用法和异步的底层原理全解析

《C#中asyncawait异步关键字用法和异步的底层原理全解析》:本文主要介绍C#中asyncawait异步关键字用法和异步的底层原理全解析,本文给大家介绍的非常详细,对大家的学习或工作具有一... 目录C#异步编程一、异步编程基础二、异步方法的工作原理三、代码示例四、编译后的底层实现五、总结C#异步编程

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

Go 语言中的select语句详解及工作原理

《Go语言中的select语句详解及工作原理》在Go语言中,select语句是用于处理多个通道(channel)操作的一种控制结构,它类似于switch语句,本文给大家介绍Go语言中的select语... 目录Go 语言中的 select 是做什么的基本功能语法工作原理示例示例 1:监听多个通道示例 2:带

鸿蒙中@State的原理使用详解(HarmonyOS 5)

《鸿蒙中@State的原理使用详解(HarmonyOS5)》@State是HarmonyOSArkTS框架中用于管理组件状态的核心装饰器,其核心作用是实现数据驱动UI的响应式编程模式,本文给大家介绍... 目录一、@State在鸿蒙中是做什么的?二、@Spythontate的基本原理1. 依赖关系的收集2.

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、