【算法优选】 动态规划之子数组、子串系列——壹

2024-05-14 21:04

本文主要是介绍【算法优选】 动态规划之子数组、子串系列——壹,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 🎋前言
  • 🎋最大子数组和
    • 🚩题目描述
    • 🚩算法思路
    • 🚩代码实现
  • 🌴环形子数组的最大和
    • 🚩题目描述
    • 🚩算法思路:
    • 🚩代码实现
  • 🌲乘积最大子数组
    • 🚩题目描述
    • 🚩算法思路:
    • 🚩代码实现
  • ⭕总结

🎋前言

动态规划相关题目都可以参考以下五个步骤进行解答:

  1. 状态表示

  2. 状态转移⽅程

  3. 初始化

  4. 填表顺序

  5. 返回值

后面题的解答思路也将按照这五个步骤进行讲解。

🎋最大子数组和

🚩题目描述

给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

子数组是数组中的一个连续部分。

  • 示例 1:
    输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
    输出:6
    解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。
  • 示例 2:
    输入:nums = [1]
    输出:1
  • 示例 3:
    输入:nums = [5,4,-1,7,8]
    输出:23
class Solution {public int maxSubArray(int[] nums) {}
}

🚩算法思路

  1. 状态表示:

对于线性 dp ,我们可以⽤「经验 + 题⽬要求」来定义状态表示:

  • 以某个位置为结尾,进行一系列操作;
  • 以某个位置为起点,进行一系列操作。

这⾥我们选择比较常用的方式,以「某个位置为结尾」,结合「题目要求」,定义⼀个状态表示:

dp[i] 表⽰:以 i 位置元素为结尾的「所有⼦数组」中和的最⼤和。

  1. 状态转移⽅程:

dp[i] 的所有可能可以分为以下两种:

  • 子数组的长度为 1 :此时 dp[i] = nums[i] ;
  • 子数组的长度⼤大于 1 :此时 dp[i] 应该等于 以 i - 1 做结尾的「所有⼦数组」中和 的最⼤值再加上 nums[i] ,也就是 dp[i - 1] + nums[i] 。

由于我们要的是「最大值」,因此应该是两种情况下的最⼤值,因此可得转移⽅程:

  • dp[i] = max(nums[i], dp[i - 1] + nums[i]) 。
  1. 初始化:

可以在最前⾯加上⼀个「辅助结点」,帮助我们初始化。使用这种技巧要注意两个点:

  • 辅助结点里面的值要「保证后续填表是正确的」;
  • 「下标的映射关系」。

在本题中,最前⾯加上⼀个格⼦,并且让 dp[0] = 0 即可。

  1. 填表顺序

根据「状态转移⽅程」易得,填表顺序为「从左往右」。

  1. 返回值:

状态表示为「以 i 为结尾的所有⼦数组」的最⼤值,但是最大子数组和的结尾我们是不确定的。

因此我们需要返回整个 dp 表中的最⼤值。

🚩代码实现

class Solution {public int maxSubArray(int[] nums) {int[] dp = new int[nums.length + 1];int ret = Integer.MIN_VALUE;for (int  i = 1; i < dp.length; i++) {dp[i] = Math.max(nums[i -1],dp[i - 1] + nums[i - 1]);ret = Math.max(ret,dp[i]);}return ret;}
}

在这里插入图片描述

🌴环形子数组的最大和

🚩题目描述

给定一个长度为 n 的环形整数数组 nums ,返回 nums 的非空 子数组 的最大可能和 。

环形数组 意味着数组的末端将会与开头相连呈环状。形式上, nums[i] 的下一个元素是 nums[(i + 1) % n] , nums[i] 的前一个元素是 nums[(i - 1 + n) % n] 。

子数组 最多只能包含固定缓冲区 nums 中的每个元素一次。形式上,对于子数组 nums[i], nums[i + 1], …, nums[j] ,不存在 i <= k1, k2 <= j 其中 k1 % n == k2 % n 。

  • 示例 1:
    输入:nums = [1,-2,3,-2]
    输出:3
    解释:从子数组 [3] 得到最大和 3
  • 示例 2:
    输入:nums = [5,-3,5]
    输出:10
    解释:从子数组 [5,5] 得到最大和 5 + 5 = 10
  • 示例 3:
    输入:nums = [3,-2,2,-3]
    输出:3
    解释:从子数组 [3] 和 [3,-2,2] 都可以得到最大和 3
class Solution {public int maxSubarraySumCircular(int[] nums) {}
}

🚩算法思路:

本题与「最大子数组和」的区别在于,考虑问题的时候不仅要分析「数组内的连续区域」,还要考虑「数组⾸尾相连」的⼀部分。结果的可能情况分为以下两种:

  1. 结果在数组的内部,包括整个数组;
  2. 结果在数组首尾相连的⼀部分上。

其中,对于第⼀种情况,我们仅需按照「最大子数组和」的求法就可以得到结果,记为 fmax 。

对于第⼆种情况,我们可以分析⼀下:

  • 如果数组⾸尾相连的⼀部分是最⼤的数组和,那么数组中间就会空出来⼀部分;
  • 因为数组的总和 sum 是不变的,那么中间连续的⼀部分的和⼀定是最小的;

因此,我们就可以得出⼀个结论,对于第⼆种情况的最⼤和,应该等于 sum - gmin ,其中gmin 表⽰数组内的「最⼩⼦数组和」。

两种情况下的最⼤值,就是我们要的结果。

但是,由于数组内有可能全部都是负数,第⼀种情况下的结果是数组内的最⼤值(是个负数),第⼆种情况下的 gmin == sum ,求的得结果就会是 0 。

若直接求两者的最⼤值,就会是 0 。但是实际的结果应该是数组内的最⼤值。对于这种情况,我们需要特殊判断⼀下。

由于「最⼤⼦数组和」的⽅法已经讲过,这⾥只提⼀下「最⼩⼦数组和」的求解过程,其实与「最⼤⼦数组和」的求法是⼀致的。⽤ f 表⽰最⼤和, g 表⽰最⼩和。

  1. 状态表示:

g[i] 表⽰:以 i 做结尾的「所有⼦数组」中和的最⼩值。

  1. 状态转移⽅程:

g[i] 的所有可能可以分为以下两种:

  1. ⼦数组的⻓度为 1 :此时 g[i] = nums[i] ;
  2. ⼦数组的⻓度⼤于 1 :此时 g[i] 应该等于 以 i - 1 做结尾的「所有⼦数组」中和的最⼩值再加上 nums[i] ,也就是 g[i - 1] + nums[i] 。

由于我们要的是最⼩⼦数组和,因此应该是两种情况下的最⼩值,因此可得转移⽅程:

  • g[i] = min(nums[i], g[i - 1] + nums[i]) 。
  1. 初始化:
    可以在最前⾯加上⼀个辅助结点,帮助我们初始化。使⽤这种技巧要注意两个点:
  • 辅助结点⾥⾯的值要保证后续填表是正确的;

  • 下标的映射关系。

在本题中,最前⾯加上⼀个格⼦,并且让 g[0] = 0 即可。

  1. 填表顺序:

根据状态转移⽅程易得,填表顺序为「从左往右」。

  1. 返回值:
  • 先找到 f 表⾥⾯的最⼤值 -> fmax ;
  • 找到 g 表⾥⾯的最⼩值 -> gmin ;
  • 统计所有元素的和 -> sum ;
  • 返回 sum == gmin ? fmax : max(fmax, sum - gmin)

🚩代码实现

    public int maxSubarraySumCircular(int[] nums) {// 1. 创建 dp 表// 2. 初始化// 3. 填表// 4. 返回值int n = nums.length;int[] f = new int[n + 1];int[] g = new int[n + 1];int sum = 0;int fmax = Integer.MIN_VALUE;int gmin = Integer.MAX_VALUE;for(int i = 1; i <= n; i++) {int x = nums[i - 1];f[i] = Math.max(x, x + f[i - 1]);fmax = Math.max(fmax, f[i]);g[i] = Math.min(x, x + g[i - 1]);gmin = Math.min(gmin, g[i]);sum += x;}return sum == gmin ? fmax : Math.max(fmax, sum - gmin);}

在这里插入图片描述

🌲乘积最大子数组

🚩题目描述

给你一个整数数组 nums ,请你找出数组中乘积最大的非空连续

子数组(该子数组中至少包含一个数字),并返回该子数组所对应的乘积。

测试用例的答案是一个 32-位 整数。

  • 示例 1:
    输入: nums = [2,3,-2,4]
    输出: 6
    解释: 子数组 [2,3] 有最大乘积 6。
  • 示例 2:
    输入: nums = [-2,0,-1]
    输出: 0
    解释: 结果不能为 2, 因为 [-2,-1] 不是子数组。
class Solution {public int maxProduct(int[] nums) {}
}

🚩算法思路:

这道题与「最大子数组和] 非常相似,我们可以效仿着定义⼀下状态表⽰以及状态转移:

  • dp[i] 表示以 i 为结尾的所有子数组的最⼤乘积,
  • dp[i] = max(nums[i], dp[i - 1] * nums[i]) ;

由于正负号的存在,我们很容易就可以得到,这样求 dp[i] 的值是不正确的。因为 dp[i - 1] 的信息并不能让我们得到 dp[i] 的正确值。

比如数组 [-2, 5, -2] ,用上述状态转移得到的 dp数组为 [-2, 5, -2] ,最⼤乘积为 5 。但是实际上的最⼤乘积应该是所有数相乘,结果为 20 。

究其原因,就是因为我们在求 dp[2] 的时候,因为 nums[2] 是⼀个负数,因此我们需要的是「 i - 1 位置结尾的最⼩的乘积 (-10) 」,这样⼀个负数乘以「最⼩值」,才会得到真实的最⼤值。

因此,我们不仅需要⼀个「乘积最⼤值的 dp 表」,还需要⼀个「乘积最⼩值的 dp 表」。

  1. 状态表⽰:

f[i] 表⽰:以 i 结尾的所有⼦数组的最⼤乘积,
g[i] 表⽰:以 i 结尾的所有⼦数组的最⼩乘积。

  1. 状态转移⽅程:

遍历每⼀个位置的时候,我们要同步更新两个 dp 数组的值。

对于 f[i] ,也就是「以 i 为结尾的所有⼦数组的最⼤乘积」,对于所有⼦数组,可以分为下⾯三种形式:

  • ⼦数组的⻓度为 1 ,也就是 nums[i] ;
  • ⼦数组的⻓度⼤于 1 ,但 nums[i] > 0 ,此时需要的是 i - 1 为结尾的所有⼦数组的最⼤乘积 f[i - 1] ,再乘上 nums[i] ,也就是 nums[i] * f[i - 1] ;
  • ⼦数组的⻓度⼤于 1 ,但 nums[i] < 0 ,此时需要的是 i - 1 为结尾的所有⼦数组的最⼩乘积 g[i - 1] ,再乘上 nums[i] ,也就是 nums[i] * g[i - 1] ;(如果 nums[i] = 0 ,所有⼦数组的乘积均为 0 ,三种情况其实都包含了)

综上所述, f[i] = max(nums[i], max(nums[i] * f[i - 1], nums[i] * g[i -
1]) )。

对于 g[i] ,也就是「以 i 为结尾的所有⼦数组的最⼩乘积」,对于所有⼦数组,可以分为下⾯三种形式:

  • 子数组的⻓度为 1 ,也就是 nums[i] ;
  • 子数组的⻓度⼤于 1 ,但 nums[i] > 0 ,此时需要的是 i - 1 为结尾的所有子数组的最⼩乘积 g[i - 1] ,再乘上 nums[i] ,也就是 nums[i] * g[i - 1] ;
  • 子数组的长度度⼤于 1 ,但 nums[i] < 0 ,此时需要的是 i - 1 为结尾的所有子数组的最⼤乘积 f[i - 1] ,再乘上 nums[i] ,也就是 nums[i] * f[i - 1] ;

综上所述, g[i] = min(nums[i], min(nums[i] * f[i - 1], nums[i] * g[i - 1])) 。
(如果 nums[i] = 0 ,所有⼦数组的乘积均为 0 ,三种情况其实都包含了)

  1. 初始化:

可以在最前面加上⼀个辅助结点,帮助我们初始化。使⽤这种技巧要注意两个点:

  • 辅助结点里面的值要保证后续填表是正确的;
  • 下标的映射关系。

在本题中,最前⾯加上⼀个格⼦,并且让 f[0] = g[0] = 1 即可。

  1. 填表顺序:

根据状态转移⽅程易得,填表顺序为「从左往右,两个表⼀起填」。

  1. 返回值:

返回 f 表中的最⼤值

🚩代码实现

class Solution {public int maxProduct(int[] nums) {// 1. 创建 dp 表// 2. 初始化// 3. 填表// 4. 返回值int n = nums.length;int[] f = new int[n + 1];int[] g = new int[n + 1];f[0] = 1;g[0] = 1;int ret = Integer.MIN_VALUE;for(int i = 1; i <= n; i++) {int x = nums[i - 1];int y = f[i - 1] * nums[i - 1];int z = g[i - 1] * nums[i - 1];f[i] = Math.max(x, Math.max(y, z));g[i] = Math.min(x, Math.min(y, z));ret = Math.max(ret, f[i]);}return ret;}
}

在这里插入图片描述

⭕总结

关于《【算法优选】 动态规划之子数组、子串系列——壹》就讲解到这儿,感谢大家的支持,欢迎各位留言交流以及批评指正,如果文章对您有帮助或者觉得作者写的还不错可以点一下关注,点赞,收藏支持一下!

这篇关于【算法优选】 动态规划之子数组、子串系列——壹的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/989841

相关文章

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

Spring Gateway动态路由实现方案

《SpringGateway动态路由实现方案》本文主要介绍了SpringGateway动态路由实现方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录前沿何为路由RouteDefinitionRouteLocator工作流程动态路由实现尾巴前沿S

JavaScript对象转数组的三种方法实现

《JavaScript对象转数组的三种方法实现》本文介绍了在JavaScript中将对象转换为数组的三种实用方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友... 目录方法1:使用Object.keys()和Array.map()方法2:使用Object.entr

Python动态处理文件编码的完整指南

《Python动态处理文件编码的完整指南》在Python文件处理的高级应用中,我们经常会遇到需要动态处理文件编码的场景,本文将深入探讨Python中动态处理文件编码的技术,有需要的小伙伴可以了解下... 目录引言一、理解python的文件编码体系1.1 Python的IO层次结构1.2 编码问题的常见场景二

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法

《JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法》:本文主要介绍JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法,每种方法结合实例代码给大家介绍的非常... 目录引言:为什么"相等"判断如此重要?方法1:使用some()+includes()(适合小数组)方法2

浅谈MySQL的容量规划

《浅谈MySQL的容量规划》进行MySQL的容量规划是确保数据库能够在当前和未来的负载下顺利运行的重要步骤,容量规划包括评估当前资源使用情况、预测未来增长、调整配置和硬件资源等,感兴趣的可以了解一下... 目录一、评估当前资源使用情况1.1 磁盘空间使用1.2 内存使用1.3 CPU使用1.4 网络带宽二、

Java中数组与栈和堆之间的关系说明

《Java中数组与栈和堆之间的关系说明》文章讲解了Java数组的初始化方式、内存存储机制、引用传递特性及遍历、排序、拷贝技巧,强调引用数据类型方法调用时形参可能修改实参,但需注意引用指向单一对象的特性... 目录Java中数组与栈和堆的关系遍历数组接下来是一些编程小技巧总结Java中数组与栈和堆的关系关于

go动态限制并发数量的实现示例

《go动态限制并发数量的实现示例》本文主要介绍了Go并发控制方法,通过带缓冲通道和第三方库实现并发数量限制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录带有缓冲大小的通道使用第三方库其他控制并发的方法因为go从语言层面支持并发,所以面试百分百会问到

Java中的数组与集合基本用法详解

《Java中的数组与集合基本用法详解》本文介绍了Java数组和集合框架的基础知识,数组部分涵盖了一维、二维及多维数组的声明、初始化、访问与遍历方法,以及Arrays类的常用操作,对Java数组与集合相... 目录一、Java数组基础1.1 数组结构概述1.2 一维数组1.2.1 声明与初始化1.2.2 访问