代码随想录算法训练营Day38 | 动态规划理论基础、509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯 | Python | 个人记录向

本文主要是介绍代码随想录算法训练营Day38 | 动态规划理论基础、509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯 | Python | 个人记录向,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

注:Day37休息。

本文目录

  • 动态规划理论基础
  • 509. 斐波那契数
    • 做题
    • 看文章
  • 70. 爬楼梯
    • 做题
    • 看文章
      • 空间复杂度为O(n)版本
      • 空间复杂度为O(3)版本
  • 746. 使用最小花费爬楼梯
    • 做题
    • 看文章
  • 以往忽略的知识点小结
  • 个人体会

动态规划理论基础

代码随想录:动态规划理论基础

动规五部曲:

  1. 确定dp数组(dp table)以及下标的含义
  2. 确定递推公式
  3. dp数组如何初始化
  4. 确定遍历顺序
  5. 举例推导dp数组

509. 斐波那契数

代码随想录:509. 斐波那契数
Leetcode:509. 斐波那契数

做题

class Solution:def fib(self, n: int) -> int:if n == 0 or n == 1:return nf = [0] * (n+1)f[0] = 0f[1] = 1i = 2while i <= n:f[i] = f[i-1] + f[i-2]i += 1return f[n]  

时间复杂度: O(n)
空间复杂度: O(n)

看文章

可以只维护两个数值。
时间复杂度: O(n)
空间复杂度: O(1)

70. 爬楼梯

代码随想录:70. 爬楼梯
Leetcode:70. 爬楼梯

做题

往上一格和两格加上当前的方法数,初始值为1。但感觉有点懵懵的。

class Solution:def climbStairs(self, n: int) -> int:f = [0] * (n+1)f[0] = 1for i in range(n):if i + 1 <= n:f[i+1] = f[i+1] + f[i]if i + 2 <= n:f[i+2] = f[i+2] + f[i]return f[n]    

时间复杂度:O(n)
空间复杂度:O(n)

看文章

其实类似斐波那契数。

空间复杂度为O(n)版本

class Solution:def climbStairs(self, n: int) -> int:if n <= 1:return ndp = [0] * (n + 1)dp[1] = 1dp[2] = 2for i in range(3, n + 1):dp[i] = dp[i - 1] + dp[i - 2]return dp[n]

空间复杂度为O(3)版本

# 空间复杂度为O(3)版本
class Solution:def climbStairs(self, n: int) -> int:if n <= 1:return ndp = [0] * 3dp[1] = 1dp[2] = 2for i in range(3, n + 1):total = dp[1] + dp[2]dp[1] = dp[2]dp[2] = totalreturn dp[2]

把dp[1]和dp[2]改为常变量,就变成O(1)了。

746. 使用最小花费爬楼梯

代码随想录:746. 使用最小花费爬楼梯
Leetcode:746. 使用最小花费爬楼梯

做题

直接在cost数组上做计算即可。

class Solution:def minCostClimbingStairs(self, cost: List[int]) -> int:size = len(cost)for i in range(2, len(cost)):cost[i] = min(cost[i-1], cost[i-2]) + cost[i]return min(cost[size-1], cost[size-2])

时间复杂度:O(n)
空间复杂度:O(1),使用原始数组不算空间复杂度

看文章

思路差不多。

以往忽略的知识点小结

  • 动规如果只需要保存前几个数,可以用几个常变量保存,降低空间复杂度
  • 可以举例推导dp数组,然后打印日志来debug

个人体会

完成时间:1h20min。
心得:动规刚开始,需要理清思路,今天都AC了。

这篇关于代码随想录算法训练营Day38 | 动态规划理论基础、509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯 | Python | 个人记录向的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/987881

相关文章

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC