代码随想录算法训练营Day38 | 动态规划理论基础、509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯 | Python | 个人记录向

本文主要是介绍代码随想录算法训练营Day38 | 动态规划理论基础、509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯 | Python | 个人记录向,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

注:Day37休息。

本文目录

  • 动态规划理论基础
  • 509. 斐波那契数
    • 做题
    • 看文章
  • 70. 爬楼梯
    • 做题
    • 看文章
      • 空间复杂度为O(n)版本
      • 空间复杂度为O(3)版本
  • 746. 使用最小花费爬楼梯
    • 做题
    • 看文章
  • 以往忽略的知识点小结
  • 个人体会

动态规划理论基础

代码随想录:动态规划理论基础

动规五部曲:

  1. 确定dp数组(dp table)以及下标的含义
  2. 确定递推公式
  3. dp数组如何初始化
  4. 确定遍历顺序
  5. 举例推导dp数组

509. 斐波那契数

代码随想录:509. 斐波那契数
Leetcode:509. 斐波那契数

做题

class Solution:def fib(self, n: int) -> int:if n == 0 or n == 1:return nf = [0] * (n+1)f[0] = 0f[1] = 1i = 2while i <= n:f[i] = f[i-1] + f[i-2]i += 1return f[n]  

时间复杂度: O(n)
空间复杂度: O(n)

看文章

可以只维护两个数值。
时间复杂度: O(n)
空间复杂度: O(1)

70. 爬楼梯

代码随想录:70. 爬楼梯
Leetcode:70. 爬楼梯

做题

往上一格和两格加上当前的方法数,初始值为1。但感觉有点懵懵的。

class Solution:def climbStairs(self, n: int) -> int:f = [0] * (n+1)f[0] = 1for i in range(n):if i + 1 <= n:f[i+1] = f[i+1] + f[i]if i + 2 <= n:f[i+2] = f[i+2] + f[i]return f[n]    

时间复杂度:O(n)
空间复杂度:O(n)

看文章

其实类似斐波那契数。

空间复杂度为O(n)版本

class Solution:def climbStairs(self, n: int) -> int:if n <= 1:return ndp = [0] * (n + 1)dp[1] = 1dp[2] = 2for i in range(3, n + 1):dp[i] = dp[i - 1] + dp[i - 2]return dp[n]

空间复杂度为O(3)版本

# 空间复杂度为O(3)版本
class Solution:def climbStairs(self, n: int) -> int:if n <= 1:return ndp = [0] * 3dp[1] = 1dp[2] = 2for i in range(3, n + 1):total = dp[1] + dp[2]dp[1] = dp[2]dp[2] = totalreturn dp[2]

把dp[1]和dp[2]改为常变量,就变成O(1)了。

746. 使用最小花费爬楼梯

代码随想录:746. 使用最小花费爬楼梯
Leetcode:746. 使用最小花费爬楼梯

做题

直接在cost数组上做计算即可。

class Solution:def minCostClimbingStairs(self, cost: List[int]) -> int:size = len(cost)for i in range(2, len(cost)):cost[i] = min(cost[i-1], cost[i-2]) + cost[i]return min(cost[size-1], cost[size-2])

时间复杂度:O(n)
空间复杂度:O(1),使用原始数组不算空间复杂度

看文章

思路差不多。

以往忽略的知识点小结

  • 动规如果只需要保存前几个数,可以用几个常变量保存,降低空间复杂度
  • 可以举例推导dp数组,然后打印日志来debug

个人体会

完成时间:1h20min。
心得:动规刚开始,需要理清思路,今天都AC了。

这篇关于代码随想录算法训练营Day38 | 动态规划理论基础、509. 斐波那契数、70. 爬楼梯、746. 使用最小花费爬楼梯 | Python | 个人记录向的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/987881

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)

《java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)》:本文主要介绍java中pdf模版填充表单踩坑的相关资料,OpenPDF、iText、PDFBox是三... 目录准备Pdf模版方法1:itextpdf7填充表单(1)加入依赖(2)代码(3)遇到的问题方法2:pd

Python操作PDF文档的主流库使用指南

《Python操作PDF文档的主流库使用指南》PDF因其跨平台、格式固定的特性成为文档交换的标准,然而,由于其复杂的内部结构,程序化操作PDF一直是个挑战,本文主要为大家整理了Python操作PD... 目录一、 基础操作1.PyPDF2 (及其继任者 pypdf)2.PyMuPDF / fitz3.Fre