1.tensorflow线性回归示例:保存模型,载入模型,打印模型参数,修改模型

本文主要是介绍1.tensorflow线性回归示例:保存模型,载入模型,打印模型参数,修改模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

#coding:utf-8
'''
a liner regression by tenosrflow.
input dimension: 1, output dimension: 1.
显示每个epoch的loss
利用模型预测
保存模型
载入模型
打印模型中的参数
修改模型中的参数
'''
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
from tensorflow.python.tools.inspect_checkpoint import print_tensors_in_checkpoint_file# data
x_train = np.linspace(-1, 1, 100)
y_train = 10 * x_train + np.random.randn(x_train.shape[0])
# plt.plot(x_train, y_train, "ro", label="data")
# plt.legend()
# plt.show()epochs = 30
display_step = 2
# input, output
x = tf.placeholder(dtype="float", name="input")
y = tf.placeholder(dtype="float", name="label")
# w, b
w = tf.Variable(initial_value=tf.random_normal([1]), name="weight")
b = tf.Variable(initial_value=tf.zeros([1]), name="bias")
# model
z = tf.multiply(x, w) + b
# loss functon
cost = tf.reduce_mean(tf.square(y - z))
# optimizer
optim = tf.train.GradientDescentOptimizer(learning_rate=0.01).minimize(cost)
saver = tf.train.Saver(max_to_keep=4)  # save 4 model
init = tf.global_variables_initializer()
with tf.Session() as sess:sess.run(init)for epoch in range(epochs):for x_batch, y_batch in zip(x_train, y_train):  # batch is all data theresess.run(optim, feed_dict={x:x_batch, y:y_batch})if epoch % display_step ==0:loss = sess.run(cost, feed_dict={x:x_train, y:y_train})print("epoch: %d, loss: %d" %(epoch, loss))# 保存训练过程中的模型saver.save(sess, "line_regression_model/regress.cpkt", global_step=epoch)print("train finished...")# 保存最终的模型saver.save(sess, "line_regression_model/regress.cpkt")print("final loss:", sess.run(cost, feed_dict={x:x_train, y:y_train}))print("weight:", sess.run(w))print("bias:", sess.run(b))# show train data and predict dataplt.plot(x_train, y_train, "ro", label="train")predict = sess.run(w) * x_train + sess.run(b)plt.plot(x_train, predict, "b", label="predict")plt.legend()plt.show()# 载入模型
print("*"*50)
saver = tf.train.Saver()
with tf.Session() as sess2:sess2.run(tf.global_variables_initializer())saver.restore(sess2, "line_regression_model/regress.cpkt")print(sess2.run(w))print(sess2.run(b))predict2 = sess2.run(z, feed_dict={x:0.5})print(predict2)# 打印出模型中的变量及参数
print("-"*50)
print("the params in model:")
print_tensors_in_checkpoint_file("line_regression_model/regress.cpkt", None, True)# 修改模型中的参数,并重新保存
print("-"*50)
# 以上得到了模型中参数名字为weight,bias, 下面对他们进行修改
w_change = tf.Variable(10, name="weight")
b_change = tf.Variable(0.001, name="bias")
# 把他们放到一个字典里并写在saver里
saver = tf.train.Saver({"weighs":w_change, "bias":b_change})
with tf.Session() as sess3:sess3.run(tf.global_variables_initializer())# 保存修改后的参数saver.save(sess3, "line_regression_model/regress.cpkt")
# 发现参数已经被修改
print_tensors_in_checkpoint_file("line_regression_model/regress.cpkt", None, True)

输出:

/usr/local/bin/python2.7 /Users/ming/Downloads/zhangming/tf_demo/liner_regression.py
2018-11-17 16:07:32.138907: I tensorflow/core/platform/cpu_feature_guard.cc:140] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
epoch: 0, loss: 21
epoch: 2, loss: 2
epoch: 4, loss: 1
epoch: 6, loss: 1
epoch: 8, loss: 1
epoch: 10, loss: 1
epoch: 12, loss: 1
epoch: 14, loss: 1
epoch: 16, loss: 1
epoch: 18, loss: 1
epoch: 20, loss: 1
epoch: 22, loss: 1
epoch: 24, loss: 1
epoch: 26, loss: 1
epoch: 28, loss: 1
train finished...
('final loss:', 1.0535882)
('weight:', array([10.063329], dtype=float32))
('bias:', array([0.03052005], dtype=float32))
**************************************************
[10.063329]
[0.03052005]
[5.0621843]
--------------------------------------------------
the params in model:
tensor_name:  bias
[0.03052005]
tensor_name:  weight
[10.063329]
--------------------------------------------------
tensor_name:  bias
0.001
tensor_name:  weighs
10
 

这篇关于1.tensorflow线性回归示例:保存模型,载入模型,打印模型参数,修改模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/986052

相关文章

Java内存分配与JVM参数详解(推荐)

《Java内存分配与JVM参数详解(推荐)》本文详解JVM内存结构与参数调整,涵盖堆分代、元空间、GC选择及优化策略,帮助开发者提升性能、避免内存泄漏,本文给大家介绍Java内存分配与JVM参数详解,... 目录引言JVM内存结构JVM参数概述堆内存分配年轻代与老年代调整堆内存大小调整年轻代与老年代比例元空

C++20管道运算符的实现示例

《C++20管道运算符的实现示例》本文简要介绍C++20管道运算符的使用与实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录标准库的管道运算符使用自己实现类似的管道运算符我们不打算介绍太多,因为它实际属于c++20最为重要的

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

ModelMapper基本使用和常见场景示例详解

《ModelMapper基本使用和常见场景示例详解》ModelMapper是Java对象映射库,支持自动映射、自定义规则、集合转换及高级配置(如匹配策略、转换器),可集成SpringBoot,减少样板... 目录1. 添加依赖2. 基本用法示例:简单对象映射3. 自定义映射规则4. 集合映射5. 高级配置匹

C++11作用域枚举(Scoped Enums)的实现示例

《C++11作用域枚举(ScopedEnums)的实现示例》枚举类型是一种非常实用的工具,C++11标准引入了作用域枚举,也称为强类型枚举,本文主要介绍了C++11作用域枚举(ScopedEnums... 目录一、引言二、传统枚举类型的局限性2.1 命名空间污染2.2 整型提升问题2.3 类型转换问题三、C

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到

Java实现自定义table宽高的示例代码

《Java实现自定义table宽高的示例代码》在桌面应用、管理系统乃至报表工具中,表格(JTable)作为最常用的数据展示组件,不仅承载对数据的增删改查,还需要配合布局与视觉需求,而JavaSwing... 目录一、项目背景详细介绍二、项目需求详细介绍三、相关技术详细介绍四、实现思路详细介绍五、完整实现代码

C++ 检测文件大小和文件传输的方法示例详解

《C++检测文件大小和文件传输的方法示例详解》文章介绍了在C/C++中获取文件大小的三种方法,推荐使用stat()函数,并详细说明了如何设计一次性发送压缩包的结构体及传输流程,包含CRC校验和自动解... 目录检测文件的大小✅ 方法一:使用 stat() 函数(推荐)✅ 用法示例:✅ 方法二:使用 fsee

mysql查询使用_rowid虚拟列的示例

《mysql查询使用_rowid虚拟列的示例》MySQL中,_rowid是InnoDB虚拟列,用于无主键表的行ID查询,若存在主键或唯一列,则指向其,否则使用隐藏ID(不稳定),推荐使用ROW_NUM... 目录1. 基本查询(适用于没有主键的表)2. 检查表是否支持 _rowid3. 注意事项4. 最佳实

HTML中meta标签的常见使用案例(示例详解)

《HTML中meta标签的常见使用案例(示例详解)》HTMLmeta标签用于提供文档元数据,涵盖字符编码、SEO优化、社交媒体集成、移动设备适配、浏览器控制及安全隐私设置,优化页面显示与搜索引擎索引... 目录html中meta标签的常见使用案例一、基础功能二、搜索引擎优化(seo)三、社交媒体集成四、移动