基于Spark实现的超大矩阵运算

2024-05-12 23:48

本文主要是介绍基于Spark实现的超大矩阵运算,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

由于标题强调了是在Spark平台实现的矩阵运算,所以本文会非常有针对性的介绍,甚至细节到Spark RDD的算子。

1.算法描述

思想其实很简单,就是矩阵分块计算,而分块矩阵就成了小矩阵,然后就借助于Breeze实现。而对于Spark平台而言,其处理流程如下图:


2.矩阵分块依据

这里仅仅提供一种思路,所以仅供参考。假设有两个矩阵A和B,其中A是m*k的矩阵,B是k*n的矩阵,CPU的总核数是cores,则分块方法:

  • m > k && m > n --> m/2 && cores/2
  • k > m && k > n --> k/2 && cores/2
  • n > k && n > m --> n/2 && cores/2

3.分块矩阵ID标识:BlockID

由于BlockID最后要依靠RDD在集群中通信传输,所以BlockID必须是可序列化的。另外,BlockID要作为分块矩阵的唯一标识,所以BlockID必须具有唯一性,而BlockID的唯一由一下3个属性确定:

  • blockRow:表示该子/分块矩阵在原矩阵中的行号;
  • blockCol:表示该子/分块矩阵在原矩阵中的列号;
  • blockSeq:表示该子/分块矩阵的序列号,默认为0。

4.矩阵分块原理

由于Spark处理文件时,是一行一行的处理的,所以一开始读文件,构成的RDD的类型是:RDD[(seqnum, DenseVector)] (seqnum:输入的行号,DenseVector:对应seqnum的矩阵行)。同时,我们还需要知道2个数据:

  • allrow:矩阵的总行数
  • allcol:矩阵的总列数
另外,由于矩阵运算中,矩阵形状的不同,所以分块的方式也随之而异。如下图,左上图就需要按列分块,右上图就需要按行分块,左下图就需要行列都分块,右下图就需要分别按列分块和按行分块。


4.1按行分块,列不分块

这时需要知道以下2个数据:

  • rowblocknum:按行分块的数量
  • subrow:每块矩阵的行数
然后,分三步处理:

①mapPartitions{map}将RDD[(seqnum, DenseVector)]组成新的数据结构:RDD[(seqnum/subrow, (seqnum, DenseVector))]
②groupByKey作用RDD[(seqnum/subrow, (seqnum, DenseVector))]得到新的数据结构RDD[(seqnum/subrow, Iterable[(seqnum, DenseVector)])]

e.g.
allrow = 1000, rowblocknum = 5, subrow = allrow/rowblocknum = 200

③mapPartitions{map}把Iterable[(seqnum, DenseVector)]的数据填装到子/分块矩阵submatrix中
④构建新的数据结构:RDD[(BlockID, submatrix)]

4.2按行按列分块,和按列分块行不分

这时,我们需要知道3个数据,和准备一个存储行向量的数组:
  • element: Array 读入的每行数据
  • subcol: 每块矩阵的列数
  • colblocknum:按列分块的数量
  • arrayBuff: ArrayBuffer[(BlockID, (Long, Vector))] 存储按列切分的行向量
①mapPartitions{flatMap}将输入的每行数据按列切分,存储到arrayBuff: ArrayBuffer[(BlockID, (Long, Vector))]
②groupByKey作用RDD[(BlockID, (Long, Vector))]得到新的数据结构RDD[(BlockID, Iterable[(seqnum, DenseVector)])]
e.g.
allrow = 1000, rowblocknum = 5, subrow = allrow/rowblocknum = 200
allcol = 1000, colblocknum = 5, subcol = allcol/colblocknum = 200

③mapPartitions{map}把Iterable[(seqnum, DenseVector)]的数据填装到子/分块矩阵submatrix中
④构建新的数据结构:RDD[(BlockID, submatrix)]

5.矩阵乘法的例子

例如:有两个矩阵A和B,其中A是6m*4k的矩阵,被分为3*2块个子矩阵;B是4k*4n的矩阵,被分为2*2块的子矩阵。如图:


下标(x,y,z)是每个子/分块矩阵的唯一标识BlockID(row: Int, col: Int, seq: Int = 0)的参数,即:

  • x:表示该子/分块矩阵在原矩阵中的行号,即blockRow;
  • y:表示该子/分块矩阵在原矩阵中的列号,即blockCol;
  • z:表示该子/分块矩阵的序列号,默认为0,即blockSeq。
和分块块数:
  • mSplitNum:表示矩阵A按行切分的块数;
  • kSplitNum:表示矩阵A按列切分的块数,也是矩阵B按行切分的块数;
  • nSplitNum:表示矩阵B按列切分的块数。
对于该例子,mSplitNum=3、kSplitNum=2、nSplitNum=2。
①mapPartitions{flatMap}把RDD[(BlockID, submatrix)],即矩阵A的每个子/分块矩阵按序列号生成nSplitNum个RDD[(BlockID, submatrix)],矩阵B的每个子/分块矩阵按序列号生成mSplitNum个RDD[(BlockID, subMatrix)],使之一一对应。
对于矩阵A
val array = Array.ofDim[(BlockID, DenseMatrix[Double])](nSplitNum)for (i <- 0 until nSplitNum) {val blockSeq = blockRow * nSplitNum * kSplitNum + i * kSplitNum + blockColarray(i) = (new BlockID(blockRow, i, blockSeq), DenseMatrix)
}

对于矩阵B

val array = Array.ofDim[(BlockID, DenseMatrix [Double])](mSplitNum)for (i <- 0 until mSplitNum) {val blockSeq = i * nSplitNum * kSplitNum + blockCol * kSplitNum + blockRowarray(i) = (new BlockID(i, blockCol, blockSeq), DenseMatrix)
}

e.g. mSplitNum=3,kSplitNum=2,nSplitNum=2
MatrixA

MatrixB


即:MatrixA每个子/分块矩阵复制nSplitNum份,MatrixB每个子/分块矩阵复制mSplitNum份,然后把Key值BlockID相同的子/分块矩阵相乘。
②join两矩阵A和B,使每一对subMatrix相乘,同时更新BlockID(blockRow, blockCol)使blockSeq默认为0。
③reduceByKey按BlockID把子/分块矩阵的乘积相加,得到最终的矩阵。


声明:这只是个人思想,仅做参考。按照这个想法,如果不做任何优化(比如,相乘的小矩阵不分块,而是采用广播的方式等等),在我的实验集群中好像最多能处理10000*10000*10000规模的数据集。


参考文献:

http://www.open-open.com/doc/view/dc6d0ce0233d4db397fd677a2d0a55dc

这篇关于基于Spark实现的超大矩阵运算的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/984081

相关文章

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Linux挂载linux/Windows共享目录实现方式

《Linux挂载linux/Windows共享目录实现方式》:本文主要介绍Linux挂载linux/Windows共享目录实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录文件共享协议linux环境作为服务端(NFS)在服务器端安装 NFS创建要共享的目录修改 NFS 配

通过React实现页面的无限滚动效果

《通过React实现页面的无限滚动效果》今天我们来聊聊无限滚动这个现代Web开发中不可或缺的技术,无论你是刷微博、逛知乎还是看脚本,无限滚动都已经渗透到我们日常的浏览体验中,那么,如何优雅地实现它呢?... 目录1. 早期的解决方案2. 交叉观察者:IntersectionObserver2.1 Inter

Spring Gateway动态路由实现方案

《SpringGateway动态路由实现方案》本文主要介绍了SpringGateway动态路由实现方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录前沿何为路由RouteDefinitionRouteLocator工作流程动态路由实现尾巴前沿S

JavaScript对象转数组的三种方法实现

《JavaScript对象转数组的三种方法实现》本文介绍了在JavaScript中将对象转换为数组的三种实用方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友... 目录方法1:使用Object.keys()和Array.map()方法2:使用Object.entr

k8s中实现mysql主备过程详解

《k8s中实现mysql主备过程详解》文章讲解了在K8s中使用StatefulSet部署MySQL主备架构,包含NFS安装、storageClass配置、MySQL部署及同步检查步骤,确保主备数据一致... 目录一、k8s中实现mysql主备1.1 环境信息1.2 部署nfs-provisioner1.2.

Java高效实现PowerPoint转PDF的示例详解

《Java高效实现PowerPoint转PDF的示例详解》在日常开发或办公场景中,经常需要将PowerPoint演示文稿(PPT/PPTX)转换为PDF,本文将介绍从基础转换到高级设置的多种用法,大家... 目录为什么要将 PowerPoint 转换为 PDF安装 Spire.Presentation fo