笔试时常用排序算法时间复杂度和空间复杂度

2024-05-12 04:18

本文主要是介绍笔试时常用排序算法时间复杂度和空间复杂度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

摘自维基百科: http://zh.wikipedia.org/wiki/%E6%8E%92%E5%BA%8F%E7%AE%97%E6%B3%95#.E7.A8.B3.E5.AE.9A.E6.80.A7


在计算机科学所使用的排序算法通常被分类为:

  • 计算的时间复杂度(最差、平均、和最好性能),依据列表(list)的大小(n)。一般而言,好的性能是O(n log n),且坏的性能是O(n2)。对于一个排序理想的性能是O(n)。仅使用一个抽象关键比较运算的排序算法总平均上总是至少需要O(n logn)。
  • 存储器使用量(以及其他电脑资源的使用)
  • 稳定性:稳定排序算法会让原本有相等键值的纪录维持相对次序。也就是如果一个排序算法是稳定的,当有两个相等键值的纪录RS,且在原本的列表中R出现在S之前,在排序过的列表中R也将会是在S之前。
  • 依据排序的方法:插入、交换、选择、合并等等。

稳定性[编辑]

当相等的元素是无法分辨的,比如像是整数,稳定性并不是一个问题。然而,假设以下的数对将要以他们的第一个数字来排序。

(4, 1)  (3, 1)  (3, 7)(5, 6)

在这个状况下,有可能产生两种不同的结果,一个是让相等键值的纪录维持相对的次序,而另外一个则没有:

(3, 1)  (3, 7)  (4, 1)  (5, 6)  (維持次序)
(3, 7)  (3, 1)  (4, 1)  (5, 6)  (次序被改變)

不稳定排序算法可能会在相等的键值中改变纪录的相对次序,但是稳定排序算法从来不会如此。不稳定排序算法可以被特别地实现为稳定。作这件事情的一个方式是人工扩充键值的比较,如此在其他方面相同键值的两个对象间之比较,(比如上面的比较中加入第二个标准:第二个键值的大小)就会被决定使用在原先数据次序中的条目,当作一个同分决赛。然而,要记住这种次序通常牵涉到额外的空间负担。

排序算法列表[编辑]

在这个表格中,n是要被排序的纪录数量以及k是不同键值的数量。

稳定的排序[编辑]

  • 冒泡排序(bubble sort)— O(n2)
  • 鸡尾酒排序(cocktail sort)—O(n2)
  • 插入排序(insertion sort)—O(n2)
  • 桶排序(bucket sort)—O(n);需要O(k)额外空间
  • 计数排序(counting sort)—O(n+k);需要O(n+k)额外空间
  • 归并排序(merge sort)—O(n log n);需要O(n)额外空间
  • 原地归并排序— O(n2)
  • 二叉排序树排序(binary tree sort)— O(n log n)期望时间; O(n2)最坏时间;需要O(n)额外空间
  • 鸽巢排序(pigeonhole sort)—O(n+k);需要O(k)额外空间
  • 基数排序(radix sort)—O(n·k);需要O(n)额外空间
  • 侏儒排序(gnome sort)— O(n2)
  • 图书馆排序(library sort)— 时间复杂度通常是O(n log n),需要(1+ε)n额外空间

不稳定的排序[编辑]

  • 选择排序(selection sort)—O(n2)
  • 希尔排序(shell sort)—O(n log2 n)如果使用最佳的现在版本
  • Clover排序算法(Clover sort)—O(n)期望时间,O(n^2/2)最坏情况
  • 梳排序— O(n log n)
  • 堆排序(heap sort)—O(n log n)
  • 平滑排序(smooth sort)— O(n log n)
  • 快速排序(quick sort)—O(n log n)期望时间, O(n2)最坏情况;对于大的、乱数列表一般相信是最快的已知排序
  • 内省排序(introsort)—O(n log n)
  • 耐心排序(patience sort)—O(n log n + k)最坏情况时间,需要额外的O(n + k)空间,也需要找到最长的递增子序列(longest increasing subsequence)

不实用的排序[编辑]

  • Bogo排序— O(n × n!),最坏的情况下期望时间为无穷。
  • Stupid排序—O(n3);递归版本需要O(n2)额外存储器
  • 珠排序(bead sort)— O(n) or O(√n),但需要特别的硬件
  • 煎饼排序—O(n),但需要特别的硬件
  • 臭皮匠排序(stooge sort)算法简单,但需要约n^2.7的时间

平均时间复杂度[编辑]

平均时间复杂度由高到低为:

  • 冒泡排序O(n2)
  • 选择排序O(n2)
  • 插入排序O(n2)
  • 希尔排序O(n1.25)
  • 堆排序O(n log n)
  • 归并排序O(n log n)
  • 快速排序O(n log n)
  • 基数排序O(n)

说明:虽然完全逆序的情况下,快速排序会降到选择排序的速度,不过从概率角度来说(参考信息学理论,和概率学),不对算法做编程上优化时,快速排序的平均速度比堆排序要快一些。


名称 数据对象 稳定性 时间复杂度 空间复杂度 描述
平均 最坏
冒泡排序数组O(n^2)O(1)(无序区,有序区)。从无序区通过交换找出最大元素放到有序区前端。
选择排序数组 O(n^2)O(1)(有序区,无序区)。在无序区里找一个最小的元素跟在有序区的后面。对数组:比较得多,换得少。
链表
插入排序数组、链表O(n^2)O(1)(有序区,无序区)。把无序区的第一个元素插入到有序区的合适的位置。对数组:比较得少,换得多。
堆排序数组 O(n\log n)O(1)(最大堆,有序区)。从堆顶把根卸出来放在有序区之前,再恢复堆。
归并排序数组  O(n\log n)O(n) +O(\log n) ,如果不是从下到上把数据分为两段,从两段中逐个选最小的元素移入新数据段的末尾。可从上到下或从下到上进行。
链表 O(1)
快速排序数组O(n\log n) O(n^2)O(\log n) ,O(n)(小数,枢纽元,大数)。
希尔排序数组O(n\log^2n) O(n^2)O(1)每一轮按照事先决定的间隔进行插入排序,间隔会依次缩小,最后一次一定要是1。
  
计数排序数组、链表O(n+m)O(n+m)统计小于等于该元素值的元素的个数i,于是该元素就放在目标数组的索引i位(i≥0)。
桶排序数组、链表O(n)O(m)将值为i的元素放入i号桶,最后依次把桶里的元素倒出来。
基数排序数组、链表O(k\times n)O(n^2) 一种多关键字的排序算法,可用桶排序实现。
    • 均按从小到大排列
    • k代表数值中的”数位”个数
    • n代表数据规模
    • m代表数据的最大值减最小值

转自:http://blog.csdn.net/xiexievv/article/details/45795719

这篇关于笔试时常用排序算法时间复杂度和空间复杂度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/981573

相关文章

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法

《JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法》:本文主要介绍JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法,每种方法结合实例代码给大家介绍的非常... 目录引言:为什么"相等"判断如此重要?方法1:使用some()+includes()(适合小数组)方法2

Three.js构建一个 3D 商品展示空间完整实战项目

《Three.js构建一个3D商品展示空间完整实战项目》Three.js是一个强大的JavaScript库,专用于在Web浏览器中创建3D图形,:本文主要介绍Three.js构建一个3D商品展... 目录引言项目核心技术1. 项目架构与资源组织2. 多模型切换、交互热点绑定3. 移动端适配与帧率优化4. 可

SpringBoot 获取请求参数的常用注解及用法

《SpringBoot获取请求参数的常用注解及用法》SpringBoot通过@RequestParam、@PathVariable等注解支持从HTTP请求中获取参数,涵盖查询、路径、请求体、头、C... 目录SpringBoot 提供了多种注解来方便地从 HTTP 请求中获取参数以下是主要的注解及其用法:1

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

MySQL按时间维度对亿级数据表进行平滑分表

《MySQL按时间维度对亿级数据表进行平滑分表》本文将以一个真实的4亿数据表分表案例为基础,详细介绍如何在不影响线上业务的情况下,完成按时间维度分表的完整过程,感兴趣的小伙伴可以了解一下... 目录引言一、为什么我们需要分表1.1 单表数据量过大的问题1.2 分表方案选型二、分表前的准备工作2.1 数据评估

MySQL设置密码复杂度策略的完整步骤(附代码示例)

《MySQL设置密码复杂度策略的完整步骤(附代码示例)》MySQL密码策略还可能包括密码复杂度的检查,如是否要求密码包含大写字母、小写字母、数字和特殊字符等,:本文主要介绍MySQL设置密码复杂度... 目录前言1. 使用 validate_password 插件1.1 启用 validate_passwo

Java Stream流以及常用方法操作实例

《JavaStream流以及常用方法操作实例》Stream是对Java中集合的一种增强方式,使用它可以将集合的处理过程变得更加简洁、高效和易读,:本文主要介绍JavaStream流以及常用方法... 目录一、Stream流是什么?二、stream的操作2.1、stream流创建2.2、stream的使用2.