算法—青蛙跳台阶问题汇总

2024-05-11 19:18

本文主要是介绍算法—青蛙跳台阶问题汇总,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 第一题(引子):输出菲波那切数列的第N项。
斐波那契数列含义(百度百科):
指的是这样一个数列:1、1、2、3、5、8、13、21、34、……在数学上,斐波纳契数列以如下被以递归的方法定义:F(0)=0,F(1)=1, F(n)=F(n-1)+F(n-2)(n>=2,n∈N*)递归方式:public static int fibnacci(int n){if (n==0){return 0;}if (n==1){return 1;}return fibnacci(n-1)+fibnacci(n-2);}我们计算n为4的情况:那么我们需要做如下的计算:Fibonacci(4) = Fibonacci(3) + Fibonacci(2);= Fibonacci(2) + Fibonacci(1) + Fibonacci(1) + Fibonacci(0);= Fibonacci(1) + Fibonacci(0) + Fibonacci(1) + Fibonacci(1) + Fibonacci(0);看看,多做了多少计算。2 计算了 2次,1 计算了5次,0计算了3次。正常来说我们计算4次就可以了吧。这样相当于多做了4次。非递归方式:public static int fibnacci2(int n){if (n==0){return 0;}if (n==1 || n==2){return  1;}int f1=1;int f2=1;int count=3;while (count++<=n){int temp=f1;f1=f2;f2=temp+f2;}return f2;}
延伸到青蛙跳台阶问题:
2. 一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果)。如果n=1,只有一种跳法,那就是1如果n=2,那么有两种跳法,2,[1,1]如果n=3,那么有三种跳法,[1,1,1],,[1,2],[2,1]如果n=4,那么有五种跳法,[1,1,1,1],[1,1,2],[1,2,1],[2,1,1],[2,2]如果n=5,那么有八种跳法,[1,1,1,1,1],[1,1,1,2],[1,1,2,1],[1,2,1,1],[2,1,1,1],[2,2,1],[2,1,2],[1,2,2]结果为1,2,3,5,8  这不特么是斐波那切数列嘛递归做法:public static int jump(int n){if (n==0)return 0;if (n==1)return 1;if (n==2)return 2;return jump(n-1)+jump(n-2);}非递归做法:public static int jump2(int n){if (n==0)return 0;if (n==1)return 1;if (n==2)return 2;int n1=1;int n2=2;int count=2;while (count++<=n){int tmp=n1;n1=n2;n2=tmp+n2;}return n2;}//一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。跳1阶,还剩n-1阶//f(n) = f(n-1) + f(n-2) + f(n-3) + ... + f(n-(n-1)) + f(n-n)
3. 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。f(n) = f(n-1) + f(n-2) + f(n-3) + ... + f(n-(n-1)) + f(n-n)= f(0) + f(1) + f(2) + f(3) + ... + f(n-2)+f(n-1)f(n-1) = f(0) + f(1)+f(2)+f(3) + ... + f((n-1)-1) = f(0) + f(1) + f(2) + f(3) + ... + f(n-2)so  f(n)=2*f(n-1)public int Jump3(int n) {if (n <= 1) {return 1;} else {return 2 * Jump3(n - 1);}}4. 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个m级的台阶总共有多少种跳法。先列多项式:f(n) =  f(n-1) + f(n-2) + f(n-3) + ... + f(n-m)f(n-1) =   f(n-2) + f(n-3) + ... + f(n-m) + f(n-m-1)化简得:f(n) = 2f(n-1) - f(n-m-1)public static int Jump4(int n,int m ) {//当大于m的时候是上面的公式if(n > m){return 2*Jump4(n-1, m)-Jump4(n-1-m, m);}//当小于等于m的时候就是和n级的相同了if (n <= 1) {return 1;} else {return 2 * Jump4(n - 1,n);}}
}

 

这篇关于算法—青蛙跳台阶问题汇总的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/980418

相关文章

Redis 热 key 和大 key 问题小结

《Redis热key和大key问题小结》:本文主要介绍Redis热key和大key问题小结,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、什么是 Redis 热 key?热 key(Hot Key)定义: 热 key 常见表现:热 key 的风险:二、

IntelliJ IDEA 中配置 Spring MVC 环境的详细步骤及问题解决

《IntelliJIDEA中配置SpringMVC环境的详细步骤及问题解决》:本文主要介绍IntelliJIDEA中配置SpringMVC环境的详细步骤及问题解决,本文分步骤结合实例给大... 目录步骤 1:创建 Maven Web 项目步骤 2:添加 Spring MVC 依赖1、保存后执行2、将新的依赖

python获取网页表格的多种方法汇总

《python获取网页表格的多种方法汇总》我们在网页上看到很多的表格,如果要获取里面的数据或者转化成其他格式,就需要将表格获取下来并进行整理,在Python中,获取网页表格的方法有多种,下面就跟随小编... 目录1. 使用Pandas的read_html2. 使用BeautifulSoup和pandas3.

Spring 中的循环引用问题解决方法

《Spring中的循环引用问题解决方法》:本文主要介绍Spring中的循环引用问题解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录什么是循环引用?循环依赖三级缓存解决循环依赖二级缓存三级缓存本章来聊聊Spring 中的循环引用问题该如何解决。这里聊

Spring Boot中JSON数值溢出问题从报错到优雅解决办法

《SpringBoot中JSON数值溢出问题从报错到优雅解决办法》:本文主要介绍SpringBoot中JSON数值溢出问题从报错到优雅的解决办法,通过修改字段类型为Long、添加全局异常处理和... 目录一、问题背景:为什么我的接口突然报错了?二、为什么会发生这个错误?1. Java 数据类型的“容量”限制

Java对象转换的实现方式汇总

《Java对象转换的实现方式汇总》:本文主要介绍Java对象转换的多种实现方式,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Java对象转换的多种实现方式1. 手动映射(Manual Mapping)2. Builder模式3. 工具类辅助映

关于MongoDB图片URL存储异常问题以及解决

《关于MongoDB图片URL存储异常问题以及解决》:本文主要介绍关于MongoDB图片URL存储异常问题以及解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录MongoDB图片URL存储异常问题项目场景问题描述原因分析解决方案预防措施js总结MongoDB图

SpringBoot项目中报错The field screenShot exceeds its maximum permitted size of 1048576 bytes.的问题及解决

《SpringBoot项目中报错ThefieldscreenShotexceedsitsmaximumpermittedsizeof1048576bytes.的问题及解决》这篇文章... 目录项目场景问题描述原因分析解决方案总结项目场景javascript提示:项目相关背景:项目场景:基于Spring

解决Maven项目idea找不到本地仓库jar包问题以及使用mvn install:install-file

《解决Maven项目idea找不到本地仓库jar包问题以及使用mvninstall:install-file》:本文主要介绍解决Maven项目idea找不到本地仓库jar包问题以及使用mvnin... 目录Maven项目idea找不到本地仓库jar包以及使用mvn install:install-file基

usb接口驱动异常问题常用解决方案

《usb接口驱动异常问题常用解决方案》当遇到USB接口驱动异常时,可以通过多种方法来解决,其中主要就包括重装USB控制器、禁用USB选择性暂停设置、更新或安装新的主板驱动等... usb接口驱动异常怎么办,USB接口驱动异常是常见问题,通常由驱动损坏、系统更新冲突、硬件故障或电源管理设置导致。以下是常用解决