算法—青蛙跳台阶问题汇总

2024-05-11 19:18

本文主要是介绍算法—青蛙跳台阶问题汇总,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 第一题(引子):输出菲波那切数列的第N项。
斐波那契数列含义(百度百科):
指的是这样一个数列:1、1、2、3、5、8、13、21、34、……在数学上,斐波纳契数列以如下被以递归的方法定义:F(0)=0,F(1)=1, F(n)=F(n-1)+F(n-2)(n>=2,n∈N*)递归方式:public static int fibnacci(int n){if (n==0){return 0;}if (n==1){return 1;}return fibnacci(n-1)+fibnacci(n-2);}我们计算n为4的情况:那么我们需要做如下的计算:Fibonacci(4) = Fibonacci(3) + Fibonacci(2);= Fibonacci(2) + Fibonacci(1) + Fibonacci(1) + Fibonacci(0);= Fibonacci(1) + Fibonacci(0) + Fibonacci(1) + Fibonacci(1) + Fibonacci(0);看看,多做了多少计算。2 计算了 2次,1 计算了5次,0计算了3次。正常来说我们计算4次就可以了吧。这样相当于多做了4次。非递归方式:public static int fibnacci2(int n){if (n==0){return 0;}if (n==1 || n==2){return  1;}int f1=1;int f2=1;int count=3;while (count++<=n){int temp=f1;f1=f2;f2=temp+f2;}return f2;}
延伸到青蛙跳台阶问题:
2. 一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果)。如果n=1,只有一种跳法,那就是1如果n=2,那么有两种跳法,2,[1,1]如果n=3,那么有三种跳法,[1,1,1],,[1,2],[2,1]如果n=4,那么有五种跳法,[1,1,1,1],[1,1,2],[1,2,1],[2,1,1],[2,2]如果n=5,那么有八种跳法,[1,1,1,1,1],[1,1,1,2],[1,1,2,1],[1,2,1,1],[2,1,1,1],[2,2,1],[2,1,2],[1,2,2]结果为1,2,3,5,8  这不特么是斐波那切数列嘛递归做法:public static int jump(int n){if (n==0)return 0;if (n==1)return 1;if (n==2)return 2;return jump(n-1)+jump(n-2);}非递归做法:public static int jump2(int n){if (n==0)return 0;if (n==1)return 1;if (n==2)return 2;int n1=1;int n2=2;int count=2;while (count++<=n){int tmp=n1;n1=n2;n2=tmp+n2;}return n2;}//一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。跳1阶,还剩n-1阶//f(n) = f(n-1) + f(n-2) + f(n-3) + ... + f(n-(n-1)) + f(n-n)
3. 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。f(n) = f(n-1) + f(n-2) + f(n-3) + ... + f(n-(n-1)) + f(n-n)= f(0) + f(1) + f(2) + f(3) + ... + f(n-2)+f(n-1)f(n-1) = f(0) + f(1)+f(2)+f(3) + ... + f((n-1)-1) = f(0) + f(1) + f(2) + f(3) + ... + f(n-2)so  f(n)=2*f(n-1)public int Jump3(int n) {if (n <= 1) {return 1;} else {return 2 * Jump3(n - 1);}}4. 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个m级的台阶总共有多少种跳法。先列多项式:f(n) =  f(n-1) + f(n-2) + f(n-3) + ... + f(n-m)f(n-1) =   f(n-2) + f(n-3) + ... + f(n-m) + f(n-m-1)化简得:f(n) = 2f(n-1) - f(n-m-1)public static int Jump4(int n,int m ) {//当大于m的时候是上面的公式if(n > m){return 2*Jump4(n-1, m)-Jump4(n-1-m, m);}//当小于等于m的时候就是和n级的相同了if (n <= 1) {return 1;} else {return 2 * Jump4(n - 1,n);}}
}

 

这篇关于算法—青蛙跳台阶问题汇总的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/980418

相关文章

Vue3绑定props默认值问题

《Vue3绑定props默认值问题》使用Vue3的defineProps配合TypeScript的interface定义props类型,并通过withDefaults设置默认值,使组件能安全访问传入的... 目录前言步骤步骤1:使用 defineProps 定义 Props步骤2:设置默认值总结前言使用T

Web服务器-Nginx-高并发问题

《Web服务器-Nginx-高并发问题》Nginx通过事件驱动、I/O多路复用和异步非阻塞技术高效处理高并发,结合动静分离和限流策略,提升性能与稳定性... 目录前言一、架构1. 原生多进程架构2. 事件驱动模型3. IO多路复用4. 异步非阻塞 I/O5. Nginx高并发配置实战二、动静分离1. 职责2

解决升级JDK报错:module java.base does not“opens java.lang.reflect“to unnamed module问题

《解决升级JDK报错:modulejava.basedoesnot“opensjava.lang.reflect“tounnamedmodule问题》SpringBoot启动错误源于Jav... 目录问题描述原因分析解决方案总结问题描述启动sprintboot时报以下错误原因分析编程异js常是由Ja

MySQL 表空却 ibd 文件过大的问题及解决方法

《MySQL表空却ibd文件过大的问题及解决方法》本文给大家介绍MySQL表空却ibd文件过大的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录一、问题背景:表空却 “吃满” 磁盘的怪事二、问题复现:一步步编程还原异常场景1. 准备测试源表与数据

解决Nginx启动报错Job for nginx.service failed because the control process exited with error code问题

《解决Nginx启动报错Jobfornginx.servicefailedbecausethecontrolprocessexitedwitherrorcode问题》Nginx启... 目录一、报错如下二、解决原因三、解决方式总结一、报错如下Job for nginx.service failed bec

SysMain服务可以关吗? 解决SysMain服务导致的高CPU使用率问题

《SysMain服务可以关吗?解决SysMain服务导致的高CPU使用率问题》SysMain服务是超级预读取,该服务会记录您打开应用程序的模式,并预先将它们加载到内存中以节省时间,但它可能占用大量... 在使用电脑的过程中,CPU使用率居高不下是许多用户都遇到过的问题,其中名为SysMain的服务往往是罪魁

MySQ中出现幻读问题的解决过程

《MySQ中出现幻读问题的解决过程》文章解析MySQLInnoDB通过MVCC与间隙锁机制在可重复读隔离级别下解决幻读,确保事务一致性,同时指出性能影响及乐观锁等替代方案,帮助开发者优化数据库应用... 目录一、幻读的准确定义与核心特征幻读 vs 不可重复读二、mysql隔离级别深度解析各隔离级别的实现差异

C++ vector越界问题的完整解决方案

《C++vector越界问题的完整解决方案》在C++开发中,std::vector作为最常用的动态数组容器,其便捷性与性能优势使其成为处理可变长度数据的首选,然而,数组越界访问始终是威胁程序稳定性的... 目录引言一、vector越界的底层原理与危害1.1 越界访问的本质原因1.2 越界访问的实际危害二、基

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.

Linux部署中的文件大小写问题的解决方案

《Linux部署中的文件大小写问题的解决方案》在本地开发环境(Windows/macOS)一切正常,但部署到Linux服务器后出现模块加载错误,核心原因是Linux文件系统严格区分大小写,所以本文给大... 目录问题背景解决方案配置要求问题背景在本地开发环境(Windows/MACOS)一切正常,但部署到